An Efficient Group-Based Secret Sharing Scheme

We propose a new secret sharing scheme which can be computed over an Abelian group, such as (Binary string, XOR) and (Integer, Addition). Therefore, only the XOR or the addition operations are required to implement the scheme. It is very efficient and fits for low-cost low-energy applications such as RFID tags. Making shares has a geometric presentation which makes our scheme be easily understood and analyzed.

[1]  James L. Massey,et al.  Minimal Codewords and Secret Sharing , 1999 .

[2]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[3]  Paul C. van Oorschot Proceedings of the 17th conference on Security symposium , 2008 .

[4]  Marc Langheinrich,et al.  RFID Privacy Using Spatially Distributed Shared Secrets , 2007, UCS.

[5]  Yvo Desmedt,et al.  Perfect Homomorphic Zero-Knowledge Threshold Schemes over any Finite Abelian Group , 1994, SIAM J. Discret. Math..

[6]  Bryan Parno,et al.  Unidirectional Key Distribution Across Time and Space with Applications to RFID Security , 2008, USENIX Security Symposium.

[7]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[8]  Wu Tzong-Chen,et al.  Refereed paper: A geometric approach for sharing secrets , 1995 .

[9]  Moti Yung,et al.  Advances in Cryptology — CRYPTO 2002 , 2002, Lecture Notes in Computer Science.

[10]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[11]  G. R. Blakley,et al.  Ideal perfect threshold schemes and MDS codes , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[12]  Hung-Yu Chien,et al.  A Practical ( t , n ) Multi-Secret Sharing Scheme , 2000 .

[13]  John Bloom,et al.  A modular approach to key safeguarding , 1983, IEEE Trans. Inf. Theory.

[14]  Michael K. Reiter,et al.  Efficient Byzantine-tolerant erasure-coded storage , 2004, International Conference on Dependable Systems and Networks, 2004.

[15]  Li Bai,et al.  A strong ramp secret sharing scheme using matrix projection , 2006, 2006 International Symposium on a World of Wireless, Mobile and Multimedia Networks(WoWMoM'06).

[16]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[17]  Toshiaki Tanaka,et al.  A New (k, n)-Threshold Secret Sharing Scheme and Its Extension , 2008, ISC.

[18]  Douglas M. Blough,et al.  An approach for fault tolerant and secure data storage in collaborative work environments , 2005, StorageSS '05.

[19]  Ronald Cramer,et al.  Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups , 2002, CRYPTO.

[20]  Ehud D. Karnin,et al.  On secret sharing systems , 1983, IEEE Trans. Inf. Theory.

[21]  Jingqiang Lin,et al.  A Secure Storage System Combining Secret Sharing Schemes and Byzantine Quorum Mechanisms , 2010, 2010 10th IEEE International Conference on Computer and Information Technology.

[22]  Dijiang Huang,et al.  Secret-Sharing Based Secure Communication Protocols for Passive RFIDs , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.