Microsecond Carrier Lifetimes, Controlled p-Doping, and Enhanced Air Stability in Low-Bandgap Metal Halide Perovskites

Mixed lead–tin halide perovskites have sufficiently low bandgaps (∼1.2 eV) to be promising absorbers for perovskite–perovskite tandem solar cells. Previous reports on lead–tin perovskites have typically shown poor optoelectronic properties compared to neat lead counterparts: short photoluminescence lifetimes (<100 ns) and low photoluminescence quantum efficiencies (<1%). Here, we obtain films with carrier lifetimes exceeding 1 μs and, through addition of small quantities of zinc iodide to the precursor solutions, photoluminescence quantum efficiencies under solar illumination intensities of 2.5%. The zinc additives also substantially enhance the film stability in air, and we use cross-sectional chemical mapping to show that this enhanced stability is because of a reduction in tin-rich clusters. By fabricating field-effect transistors, we observe that the introduction of zinc results in controlled p-doping. Finally, we show that zinc additives also enhance power conversion efficiencies and the stability of solar cells. Our results demonstrate substantially improved low-bandgap perovskites for solar cells and versatile electronic applications.

[1]  Dong Hoe Kim,et al.  Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells , 2019, Science.

[2]  B. Ehrler,et al.  Air-Stable and Oriented Mixed Lead Halide Perovskite (FA/MA) by the One-Step Deposition Method Using Zinc Iodide and an Alkylammonium Additive , 2019, ACS applied materials & interfaces.

[3]  Williams,et al.  Perovskite Thin Film Materials Stabilized and Enhanced by Zinc(II) Doping , 2019, Applied Sciences.

[4]  S. Bent,et al.  Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells , 2018 .

[5]  M. Johnston,et al.  The Effects of Doping Density and Temperature on the Optoelectronic Properties of Formamidinium Tin Triiodide Thin Films , 2018, Advanced materials.

[6]  R. Quintero‐Bermudez,et al.  Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air , 2018, Nature Energy.

[7]  H. Boyen,et al.  Gas Quenching for Perovskite Thin Film Deposition , 2018, Joule.

[8]  M. Johnston,et al.  Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin–Lead Triiodide Perovskites , 2018, Advanced Functional Materials.

[9]  Luis M. Pazos-Outón,et al.  Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency , 2018 .

[10]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[11]  Eli Yablonovitch,et al.  Fundamental Efficiency Limit of Lead Iodide Perovskite Solar Cells , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[12]  Pichaya Pattanasattayavong,et al.  Metal‐Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities , 2017, Advanced materials.

[13]  Maximilian T. Hörantner,et al.  The Potential of Multijunction Perovskite Solar Cells , 2017 .

[14]  Henry J. Snaith,et al.  Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions , 2017 .

[15]  M. Toney,et al.  Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites , 2017 .

[16]  H. Boyen,et al.  Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. , 2017, Journal of the American Chemical Society.

[17]  T. Stergiopoulos,et al.  A critical review on tin halide perovskite solar cells , 2017 .

[18]  S. Stranks Nonradiative Losses in Metal Halide Perovskites , 2017 .

[19]  Kai Zhu,et al.  Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells , 2017, Nature Energy.

[20]  Satyaprasad P. Senanayak,et al.  Understanding charge transport in lead iodide perovskite thin-film field-effect transistors , 2017, Science Advances.

[21]  H. Boyen,et al.  A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families , 2016, Advanced materials.

[22]  Luis M. Pazos-Outón,et al.  Research data supporting: "Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling" , 2016 .

[23]  Moritz H. Futscher,et al.  Efficiency Limit of Perovskite/Si Tandem Solar Cells , 2016 .

[24]  David S. Ginger,et al.  Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation , 2016 .

[25]  Wei Zhang,et al.  Metal halide perovskites for energy applications , 2016, Nature Energy.

[26]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[27]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[28]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[29]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[30]  M. Johnston,et al.  Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx , 2014 .

[31]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[32]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[33]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[34]  J. E. Parrott,et al.  Radiative recombination and photon recycling in photovoltaic solar cells , 1993 .

[35]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[36]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[37]  V. Bulović,et al.  Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. , 2017, Nature Materials.

[38]  H. Beere,et al.  High Open‐Circuit Voltages in Tin‐Rich Low‐Bandgap Perovskite‐Based Planar Heterojunction Photovoltaics , 2017, Advanced materials.

[39]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .