Echolocation in Oilbirds and swiftlets

The discovery of ultrasonic bat echolocation prompted a wide search for other animal biosonar systems, which yielded, among few others, two avian groups. One, the South American Oilbird (Steatornis caripensis: Caprimulgiformes), is nocturnal and eats fruit. The other is a selection of diurnal, insect-eating swiftlets (species in the genera Aerodramus and Collocalia: Apodidae) from across the Indo-Pacific. Bird echolocation is restricted to lower frequencies audible to humans, implying a system of poorer resolution than the ultrasonic (>20 kHz) biosonar of most bats and toothed whales. As such, bird echolocation has been labeled crude or rudimentary. Yet, echolocation is found in at least 16 extant bird species and has evolved several times in avian lineages. Birds use their syringes to produce broadband click-type biosonar signals that allow them to nest in dark caves and tunnels, probably with less predation pressure. There are ongoing discrepancies about several details of bird echolocation, from signal design to the question about whether echolocation is used during foraging. It remains to be seen if bird echolocation is as sophisticated as that of tongue-clicking rousette bats. Bird echolocation performance appears to be superior to that of blind humans using signals of notable similarity. However, no apparent specializations have been found so far in the birds' auditory system (from middle ear to higher processing centers). The advent of light-weight recording equipment and custom software for examining signals and reconstructing flight paths now provides the potential to study the echolocation behavior of birds in more detail and resolve such issues.

[1]  Masakazu Konishi,et al.  HEARING AND ECHOLOCATION IN THE AUSTRALIAN GREY SWIFTLET, COLLOCALIA SPODIOPYGIA , 1987 .

[2]  H. Heffner,et al.  Hearing in a megachiropteran fruit bat (Rousettus aegyptiacus). , 1998, Journal of comparative psychology.

[3]  D. R. Wylie,et al.  Echolocation, vocal learning, auditory localization and the relative size of the avian auditory midbrain nucleus (MLd) , 2006, Behavioural Brain Research.

[4]  G. Neuweiler Foraging, echolocation and audition in bats , 1984, Naturwissenschaften.

[5]  D. Griffin ECHOLOCATION BY BLIND MEN, BATS AND RADAR. , 1944, Science.

[6]  Joseph de Acosta,et al.  The natural history , 2009 .

[7]  J. Simmons,et al.  Acoustic imaging in bat sonar: Echolocation signals and the evolution of echolocation , 1980, Journal of comparative physiology.

[8]  T. Tomasi Echolocation by the Short-Tailed Shrew Blarina brevicauda , 1979 .

[9]  W. A. Cox,et al.  A Phylogenomic Study of Birds Reveals Their Evolutionary History , 2008, Science.

[10]  P. Madsen,et al.  The monopulsed nature of sperm whale clicks. , 2003, The Journal of the Acoustical Society of America.

[11]  C. Bosque,et al.  THE DIET OF THE OILBIRD IN VENEZUELA , 1995 .

[12]  J. L. Leeuwen,et al.  Bird song: Superfast muscles control dove's trill , 2004, Nature.

[13]  G. Martin,et al.  The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity , 2004, Naturwissenschaften.

[14]  A. Basbaum,et al.  The senses : a comprehensive reference , 2008 .

[15]  D. Snow The natural history of the oilbird, Steatornis caripensis, in Trinidad, W.I. Part 2. Population, breeding ecology and food , 1962, Zoologica : scientific contributions of the New York Zoological Society..

[16]  M. Tschapka,et al.  Selective Eavesdropping Behaviour in Three Neotropical Bat Species , 2013 .

[17]  W. N. Kellogg,et al.  Reactions of the Porpoise to Ultrasonic Frequencies. , 1952, Science.

[18]  S. Takagi,et al.  Natural History , 2019, Nature.

[19]  David Pye,et al.  Echolocation Signals and Echoes in Air , 1980 .

[20]  H. Thomassen,et al.  Echoclick design in swiftlets: single as well as double clicks , 2003 .

[21]  J. D. Hoyo,et al.  Handbook of the Birds of the World , 2010 .

[22]  Andrew R. Mitz,et al.  Similarities in Design Features of Orientation Sounds Used by Simpler, Nonaquatic Echolocators , 1980 .

[23]  Nachum Ulanovsky,et al.  Click-based echolocation in bats: not so primitive after all , 2011, Journal of Comparative Physiology A.

[24]  T. Poulter,et al.  Sonar Signals of the Sea Lion , 1963, Science.

[25]  P. de Knijff,et al.  A new phylogeny of swiftlets (Aves: Apodidae) based on cytochrome-b DNA. , 2003, Molecular phylogenetics and evolution.

[26]  R. Suthers,et al.  Individual Variation in Vocal Tract Resonance May Assist Oilbirds in Recognizing Echoes of Their Own Sonar Clicks , 1988 .

[27]  G D E Povel,et al.  Leading-Edge Vortex Lifts Swifts , 2004, Science.

[28]  J. Pye,et al.  Echolocation and the systematics of swiftlets , 1977 .

[29]  M. Fenton,et al.  Echolocation Calls of Euderma maculatum (Vespertilionidae): Use in Orientation and Communication , 1984 .

[30]  Martin Wikelski,et al.  The Secret Life of Oilbirds: New Insights into the Movement Ecology of a Unique Avian Frugivore , 2009, PloS one.

[31]  P. Madsen,et al.  Calling under pressure: short-finned pilot whales make social calls during deep foraging dives , 2011, Proceedings of the Royal Society B: Biological Sciences.

[32]  H. Thomassen,et al.  Phylogenetic relationships amongst swifts and swiftlets: a multi locus approach. , 2005, Molecular phylogenetics and evolution.

[34]  K. Forsman,et al.  Evidence for echolocation in the common shrew, Sorex araneus , 1988 .

[35]  A. Novick,et al.  THE SENSITIVITY OF ECHOLOCATION IN THE FRUIT BAT, ROUSETTUS , 1958 .

[36]  The sensitivity of echolocation by the Grey Swiftlet Aerodramus spodiopygius , 2008 .

[37]  M. Goodale,et al.  Citation for Published Item: Use Policy Neural Correlates of Natural Human Echolocation in Early and Late Blind Echolocation Experts , 2022 .

[38]  J. Price,et al.  The evolution of echolocation in swiftlets , 2004 .

[39]  J. Nicol,et al.  Tapeta lucida in the eyes of goatsuckers (Caprimulgidae) , 1974, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[40]  Evidence that seals may use echolocation , 1982, Nature.

[42]  Surlykke Annemarie Convergent Acoustic Field of View in Echolocating Bats , 2012 .

[43]  D. Griffin,et al.  Listening in the Dark , 1959 .

[44]  J. Price,et al.  Phylogenetic relationships of the Papuan Swiftlet Aerodramus papuensis and implications for the evolution of avian echolocation , 2005 .

[45]  A. Novick,et al.  EVIDENCE FOR ECHOLOCATION IN SHREWS. , 1964, The Journal of experimental zoology.

[46]  M. Fenton Acuity of Echolocation in Collocalia hirundinacea (Aves: Apodidae), With Comments on the Distributions of Echolocating Swiftlets and Molossid Bats , 1975 .

[47]  E. Gould Evidence for echolocation in the Tenrecidae of Madagascar , 1965 .

[48]  Lasse Jakobsen,et al.  Superfast Muscles Set Maximum Call Rate in Echolocating Bats , 2011, Science.

[49]  Kenneth S. Norris,et al.  AN EXPERIMENTAL DEMONSTRATION OF ECHOLOCATION BEHAVIOR IN THE PORPOISE, TURSIOPS TRUNCATUS (MONTAGU) , 1961 .

[50]  Micheal L. Dent,et al.  Hearing in Birds and Reptiles , 2000 .

[51]  Nachum Ulanovsky,et al.  Rapid jamming avoidance in biosonar , 2007, Proceedings of the Royal Society B: Biological Sciences.

[52]  J. Fullard,et al.  Observations on the behavioural ecology of the Atiu Swiftlet Aerodramus sawtelli , 2010 .

[53]  F. Goller,et al.  A new mechanism of sound generation in songbirds. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. R. Runkle,et al.  Nutritional Values of 14 Fig Species and Bat Feeding Preferences in Panama 1 , 2000 .

[55]  D W Snow The natural history of the oilbird, Steatornis caripensis, in Trinidad, W.I. Part 1. General behavior and breeding habits , 1961, Zoologica : scientific contributions of the New York Zoological Society..

[56]  R. Schusterman,et al.  Why pinnipeds don't echolocate. , 2000, The Journal of the Acoustical Society of America.

[57]  N. Simmons,et al.  A phylogeny of megachiropteran bats (Mammalia: Chiroptera: Pteropodidae) based on direct optimization analysis of one nuclear and four mitochondrial genes , 2003, Cladistics : the international journal of the Willi Hennig Society.

[58]  M. Obrist Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design , 1995, Behavioral Ecology and Sociobiology.

[59]  Margaret L. Brandeau,et al.  Optimal Localization by Pointing Off Axis , 2010 .

[60]  David Lack Swifts in a tower , 1973 .

[61]  F. P. Möhres,et al.  Über die Orientierung der Flughunde (Chiroptera - Pteropodidae) , 2004, Zeitschrift für vergleichende Physiologie.

[62]  E I Knudsen,et al.  The oilbird: hearing and echolocation. , 1979, Science.

[63]  Lasse Jakobsen,et al.  Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit , 2010, Proceedings of the National Academy of Sciences.

[64]  Pedro Jordano,et al.  The Missing Part of Seed Dispersal Networks: Structure and Robustness of Bat-Fruit Interactions , 2011, PloS one.

[65]  Björn M. Siemers,et al.  Why do shrews twitter? Communication or simple echo-based orientation , 2009, Biology Letters.

[66]  P. Tyack,et al.  Biosonar performance of foraging beaked whales (Mesoplodon densirostris) , 2005, Journal of Experimental Biology.

[67]  M. Brock Fenton,et al.  Conspecifics influence call design in the Brazilian free-tailed bat, Tadarida brasiliensis , 2004 .

[68]  E. R. Buchler The use of echolocation by the wandering shrew (Sorex vagrans) , 1976, Animal Behaviour.

[69]  P. Madsen,et al.  Echolocation behaviour adapted to prey in foraging Blainville's beaked whale (Mesoplodon densirostris) , 2008, Proceedings of the Royal Society B: Biological Sciences.

[70]  H. Thomassen,et al.  Swift as sound. Design and evolution of the echolocation system in Swiftlets (Apodidae : Collocaliini) , 2005 .

[71]  Henry E. Heffner,et al.  Audiogram of the big brown bat (Eptesicus fuscus) , 1997, Hearing Research.

[72]  M. Wink,et al.  Molecular phylogeny of Old World swifts (Aves: Apodiformes, Apodidae, Apus and Tachymarptis) based on mitochondrial and nuclear markers. , 2012, Molecular phylogenetics and evolution.

[73]  R. Arlettaz,et al.  Low-frequency echolocation enables the bat Tadarida teniotis to feed on tympanate insects , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[74]  D. Griffin,et al.  Sensitivity of echolocation in cave swiftlets. , 1970, The Biological bulletin.

[75]  K. M. Dallenbach,et al.  "Facial Vision": The Perception of Obstacles by the Blind , 1944 .

[76]  Echolocation by cave swiftlets , 1982, Behavioral Ecology and Sociobiology.

[77]  H. Heffner,et al.  Free-field audiogram of the Japanese macaque (Macaca fuscata). , 1999, The Journal of the Acoustical Society of America.

[78]  J. Fullard,et al.  Echolocation in free-flying Atiu Swiftlets (Aerodramus sawtelli) , 1993 .

[79]  The physiology of vocalization by the echolocating oilbird,Steatornis caripensis , 1985, Journal of Comparative Physiology A.

[80]  E. Kalko,et al.  Intense echolocation calls from two `whispering' bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae) , 2009, Journal of Experimental Biology.