Nonequilibrium Shear Viscosity Computations with Langevin Dynamics

We study the mathematical properties of a nonequilibrium Langevin dynamics which can be used to estimate the shear viscosity of a system. More precisely, we prove a linear response result which allows us to relate averages over the nonequilibrium stationary state of the system to equilibrium canonical expectations. We then write a local conservation law for the average longitudinal velocity of the fluid and show how, under some closure approximation, the viscosity can be extracted from this profile. We finally characterize the asymptotic behavior of the velocity profile, in the limit where either the transverse or the longitudinal friction goes to infinity. Some numerical illustrations of the theoretical results are also presented.

[1]  J. Kirkwood The statistical mechanical theory of irreversible processes , 1949 .

[2]  B. D. Todd,et al.  Parameterization of the nonlocal viscosity kernel for an atomic fluid. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Tony Shardlow,et al.  Geometric Ergodicity for Dissipative Particle Dynamics * , 2022 .

[4]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[5]  B. D. Todd,et al.  A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows. , 2006, The Journal of chemical physics.

[6]  Evans,et al.  Pressure tensor for inhomogeneous fluids. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Luc Rey-Bellet,et al.  Ergodic properties of Markov processes , 2006 .

[8]  G. Stoltz,et al.  THEORETICAL AND NUMERICAL COMPARISON OF SOME SAMPLING METHODS FOR MOLECULAR DYNAMICS , 2007 .

[9]  R. Balian From microphysics to macrophysics , 1991 .

[10]  J. Eckmann,et al.  Non-Equilibrium Statistical Mechanics of Anharmonic Chains Coupled to Two Heat Baths at Different Temperatures , 1998, chao-dyn/9804001.

[11]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[12]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[13]  Martin Hairer,et al.  From Ballistic to Diffusive Behavior in Periodic Potentials , 2007, 0707.2352.

[14]  G. Ciccotti,et al.  Stationary nonequilibrium states by molecular dynamics. Fourier's law , 1982 .

[15]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[16]  R. Joubaud Mathematical and numerical modelling of fluids at nanometric scales , 2012 .

[17]  M. Chial,et al.  in simple , 2003 .

[18]  R. Moeckel,et al.  Non-Ergodicity of the Nosé–Hoover Thermostatted Harmonic Oscillator , 2005, math/0511178.

[19]  K. Kremer,et al.  Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  M. Hairer,et al.  Spectral Properties of Hypoelliptic Operators , 2002 .

[21]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[22]  Giovanni Ciccotti,et al.  Stationary nonequilibrium states by molecular dynamics. II. Newton's law , 1984 .

[23]  Periodic Homogenization for Hypoelliptic Diffusions , 2004, math-ph/0403003.

[24]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena , 1952 .

[25]  G. A. Pavliotis,et al.  Periodic homogenization for inertial particles , 2005 .

[26]  Richard L. Rowley,et al.  Transient Nonequilibrium Molecular Dynamic Simulations of Thermal Conductivity: 1. Simple Fluids , 2005 .

[27]  Gabriel Stoltz,et al.  Langevin dynamics with constraints and computation of free energy differences , 2010, Math. Comput..

[28]  I. R. Mcdonald,et al.  On the calculation by molecular dynamics of the shear viscosity of a simple fluid , 1973 .

[29]  G. A. Pavliotis,et al.  Asymptotic analysis for the generalized Langevin equation , 2010, 1003.4203.

[30]  R. Moeckel,et al.  Non-ergodicity of Nosé–Hoover dynamics , 2008, 0812.3320.

[31]  Matej Praprotnik,et al.  Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat. , 2007, Soft matter.

[32]  S. Edwards,et al.  The computer study of transport processes under extreme conditions , 1972 .

[33]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[34]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[35]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[36]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .