Return of the primal-dual: distributed metric facilitylocation

In this paper we present fast, distributed approximation algorithms for the <i>metric facility location</i> problem in the <i>CONGEST</i> model, where message sizes are bounded by <i>O</i>(log <i>N</i>) bits, <i>N</i> being the network size. We first show how to obtain a 7-approximation in <i>O</i>(log <i>m</i> + log <i>n</i>) rounds via the primal-dual method; here <i>m</i> is the number of facilities and <i>n</i> is the number of clients. Subsequently, we generalize this to a <i>k</i>-round algorithm, that for every constant <i>k</i>, yields an approximation factor of <i>O</i>(<i>m</i><sup>2/√<i>k</i></sup> ∙ <i>n</i><sup>3/√<i>k</i></sup>). These results answer a question posed by Moscibroda and Wattenhofer (<i>PODC 2005</i>). Our techniques are based on the primal-dual algorithm due to Jain and Vazirani (<i>JACM 2001</i>) and a rapid randomized sparsification of graphs due to Gfeller and Vicari (<i>PODC 2007</i>). These results complement the results of Moscibroda and Wattenhofer (<i>PODC 2005</i>) for <i>non-metric</i> facility location and extend the results of Gehweiler et al. (<i>SPAA 2006</i>) for uniform metric facility location.

[1]  Dorothea Wagner,et al.  Algorithms for Sensor and Ad Hoc Networks, Advanced Lectures [result from a Dagstuhl seminar] , 2007, Algorithms for Sensor and Ad Hoc Networks.

[2]  Sudipto Guha,et al.  Improved combinatorial algorithms for the facility location and k-median problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[3]  Joachim Gehweiler,et al.  A distributed O(1)-approximation algorithm for the uniform facility location problem , 2006, SPAA.

[4]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[5]  Sriram V. Pemmaraju,et al.  Finding Facilities Fast , 2009, ICDCN.

[6]  Christoph Lenzen,et al.  Case Study: Dominating Sets in Planar Graphs , 2008 .

[7]  V VaziraniVijay,et al.  Approximation algorithms for metric facility location and k-Median problems using the primal-dual schema and Lagrangian relaxation , 2001 .

[8]  Said Salhi,et al.  Discrete Location Theory , 1991 .

[9]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[10]  Roger Wattenhofer,et al.  Facility location: distributed approximation , 2005, PODC '05.

[11]  Beat Gfeller,et al.  A randomized distributed algorithm for the maximal independent set problem in growth-bounded graphs , 2007, PODC '07.

[12]  Roger Wattenhofer,et al.  Constant Time Distributed Dominating Set Approximation , 2022 .

[13]  Jeffrey Scott Vitter,et al.  e-approximations with minimum packing constraint violation (extended abstract) , 1992, STOC '92.

[14]  Éva Tardos,et al.  Approximation algorithms for facility location problems (extended abstract) , 1997, STOC '97.

[15]  Michael Elkin,et al.  Distributed approximation: a survey , 2004, SIGA.

[16]  Vijay V. Vazirani,et al.  Approximation algorithms for metric facility location and k-Median problems using the primal-dual schema and Lagrangian relaxation , 2001, JACM.

[17]  Bhaba R. Sarker,et al.  Discrete location theory , 1991 .

[18]  Maleq Khan,et al.  A fast distributed approximation algorithm for minimum spanning trees , 2007, Distributed Computing.

[19]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[20]  Sukhamay Kundu A Distributed O(|E|) Algorithm for Optimal Link-Reversal , 2009, ICDCN.

[21]  Dorit S. Hochbaum,et al.  Heuristics for the fixed cost median problem , 1982, Math. Program..

[22]  Fabian Kuhn,et al.  Distributed approximation of capacitated dominating sets , 2007, SPAA.

[23]  Thomas Moscibroda,et al.  What Cannot Be Computed Locally , 2004 .