Spline and Spline Wavelet Methods with Applications to Signal and Image Processing

This volume provides universal methodologies accompanied by Matlab software to manipulate numerous signal and image processing applications. It is done with discreteand polynomial periodic splines. Various contributions of splines to signal and image processing from a unified perspective are presented. This presentation is based on Zak transform and on Spline Harmonic Analysis (SHA) methodology. SHA combines approximation capabilities of splines with the computational efficiency of the Fast Fourier transform. SHA reduces the designof different spline types such as splines, spline wavelets (SW), wavelet frames (SWF)and wavelet packets (SWP)and their manipulations by simple operations. Digital filters, produced by wavelets design process, give birth to subdivision schemes. Subdivision schemes enable to performfast explicit computation of splines' values at dyadic and triadic rational points. This is used for signals and imagesup sampling. In addition tothe design of a diverse library of splines, SW, SWP and SWF, this book describes their applications topractical problems. The applications include up sampling, image denoising, recovery from blurred images, hydro-acoustic target detection, to name a few. The SW Fare utilized for image restoration that was degraded by noise, blurring and loss of significant number of pixels. The bookis accompanied by Matlab based software that demonstrates and implements all the presented algorithms. The book combines extensive theoretical exposurewith detailed description of algorithms, applications and software. The Matlab software can be downloaded from http://extras.springer.com

[1]  Michael Unser,et al.  On the asymptotic convergence of B-spline wavelets to Gabor functions , 1992, IEEE Trans. Inf. Theory.

[2]  Amir Averbuch,et al.  Wavelet Transforms Generated by splines , 2007, Int. J. Wavelets Multiresolution Inf. Process..

[3]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[4]  Amir Averbuch,et al.  Wavelet-packet-based algorithm for identification of quasi-periodic signals , 2001, SPIE Optics + Photonics.

[5]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[6]  M. Eden,et al.  Discrete spline filters for multiresolutions and wavelets of l 2 , 1994 .

[7]  Amir Averbuch,et al.  Splines: A New Contribution to Wavelet Analysis , 2001 .

[8]  Masaru Kamada,et al.  Two-dimensional spline interpolation for image reconstruction , 1988, Pattern Recognit..

[9]  Ofer Amrani,et al.  Symmetric interpolatory Framelets and their Erasure Recovery Properties , 2007, Int. J. Wavelets Multiresolution Inf. Process..

[10]  A. Averbuch,et al.  Deconvolution by matching pursuit using spline wavelet packets dictionaries , 2011 .

[11]  Michael A. Unser,et al.  Splines: a perfect fit for medical imaging , 2002, SPIE Medical Imaging.

[12]  Malcolm A. Sabin,et al.  Analysis and Design of Univariate Subdivision Schemes , 2010, Geometry and Computing.

[13]  Amir Averbuch,et al.  Wavelet-based acoustic detection of moving vehicles , 2009, Multidimens. Syst. Signal Process..

[14]  Amir Averbuch,et al.  Tight and sibling frames originated from discrete splines , 2006, Signal Process..

[15]  Amir Averbuch,et al.  A Wavelet Packet Algorithm for Classification and Detection of Moving Vehicles , 2001, Multidimens. Syst. Signal Process..

[16]  Amir Averbuch,et al.  Delineation of malignant skin tumors by hyperspectral imaging using diffusion maps dimensionality reduction , 2015, Biomed. Signal Process. Control..

[17]  S. Osher,et al.  Image restoration: Total variation, wavelet frames, and beyond , 2012 .

[18]  Amir Averbuch,et al.  Multidimensional Seismic Compression by Hybrid Transform with MultiscaleBased Coding , 2010 .

[19]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[20]  Amir Averbuch,et al.  Construction of Biorthogonal Discrete Wavelet Transforms Using Interpolatory Splines , 2002 .

[21]  K. Ichige,et al.  An approximation for discrete B-splines in time domain , 1997, IEEE Signal Processing Letters.

[22]  Hsieh Hou,et al.  Cubic splines for image interpolation and digital filtering , 1978 .

[23]  Michel Barlaud,et al.  Image coding using wavelet transform , 1992, IEEE Trans. Image Process..

[24]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[25]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[26]  S. Mallat,et al.  Adaptive time-frequency decomposition with matching pursuits , 1992, [1992] Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis.

[27]  Amir Averbuch,et al.  Biorthogonal Butterworth wavelets derived from discrete interpolatory splines , 2001, IEEE Trans. Signal Process..

[28]  J. Zak FINITE TRANSLATIONS IN SOLID-STATE PHYSICS. , 1967 .

[29]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[30]  Zuowei Shen Wavelet Frames and Image Restorations , 2011 .

[31]  Jan-Olov Strömberg,et al.  A modified Franklin system and higher-order spline systems on Rn as unconditional bases for Hardy spaces , 2009 .

[32]  Amir Averbuch,et al.  Computation of interpolatory splines via triadic subdivision , 2010, Adv. Comput. Math..

[33]  L. A. Ferrari,et al.  B-spline FIR filters , 1994 .

[34]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[35]  A. Aldroubi,et al.  Families of multiresolution and wavelet spaces with optimal properties , 1993 .

[36]  Amir Averbuch,et al.  Lifting scheme for biorthogonal multiwavelets originated from Hermite splines , 2002, IEEE Trans. Signal Process..

[37]  Michael Unser,et al.  A family of polynomial spline wavelet transforms , 1993, Signal Process..

[38]  Amir Averbuch,et al.  Image Compression Using Spline Based Wavelet Transforms , 2001 .

[39]  Manfred Tasche,et al.  On the Computation of Periodic Spline Wavelets , 1995 .

[40]  W. Dahmen,et al.  Biorthogonal Multiwavelets on the Interval: Cubic Hermite Splines , 2000 .

[41]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[42]  Michael Unser,et al.  Shift-orthogonal wavelet bases using splines , 1996, IEEE Signal Processing Letters.

[43]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[44]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[45]  Valery A. Zheludev,et al.  Interpolatory subdivision schemes with infinite masks originated from splines , 2006, Adv. Comput. Math..

[46]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[47]  Amir Averbuch,et al.  Acoustic detection and classification of river boats , 2011 .

[48]  Leonard A. Ferrari,et al.  Discrete splines and spline filters , 1992 .

[49]  Valery A. Zheludev,et al.  AN OPERATIONAL CALCULUS CONNECTED WITH PERIODIC SPLINES , 1991 .

[50]  Klaudia Kaiser,et al.  Methods Of Shape Preserving Spline Approximation , 2016 .

[51]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[52]  Valery A. Zheludev,et al.  Local spline approximation on a uniform mesh , 1989 .

[53]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[54]  A. Schneider Biorthogonal Cubic Hermite Spline Multiwavelets on the Interval with Complementary Boundary Conditions , 2009 .

[55]  Ronald R. Coifman,et al.  Signal and image representation in combined spaces , 1998 .

[56]  Zuowei Shen,et al.  Compactly supported tight affine spline frames in L2(Rd) , 1998, Math. Comput..

[57]  Y. Meyer,et al.  Remarques sur l'analyse de Fourier à fenêtre , 1991 .

[58]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[59]  Guoyan Zheng,et al.  An Optimized Spline-Based Registration of a 3D CT to a Set of C-Arm Images , 2006, Int. J. Biomed. Imaging.

[60]  Akram Aldroubi,et al.  B-spline signal processing. II. Efficiency design and applications , 1993, IEEE Trans. Signal Process..

[61]  Amir Averbuch,et al.  Interpolatory frames in signal space , 2006, IEEE Transactions on Signal Processing.

[62]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[63]  Ronald R. Coifman,et al.  Local discriminant bases and their applications , 1995, Journal of Mathematical Imaging and Vision.

[64]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[65]  Amir Averbuch,et al.  Butterworth wavelet transforms derived from discrete interpolatory splines: recursive implementation , 2001, Signal Process..

[66]  E. Catmull,et al.  A CLASS OF LOCAL INTERPOLATING SPLINES , 1974 .

[67]  Michael Unser,et al.  B-spline signal processing. I. Theory , 1993, IEEE Trans. Signal Process..

[68]  W. Beckner,et al.  Conference on Harmonic Analysis in honor of Antoni Zygmund , 1983 .

[69]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[70]  Dennis Gabor,et al.  Theory of communication , 1946 .

[71]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[72]  Martin Vetterli,et al.  Oversampled filter banks , 1998, IEEE Trans. Signal Process..

[73]  Amir Averbuch,et al.  Multiwavelet Frames in Signal Space Originated From Hermite Splines , 2007, IEEE Transactions on Signal Processing.

[74]  Masaru Kamada,et al.  A smooth signal generator based on quadratic B-spline functions , 1995, IEEE Trans. Signal Process..

[75]  Valery A. Zheludev,et al.  Wavelet Analysis in Spaces of Slowly Growing Splines Via Integral Representation , 1998 .

[76]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[77]  Hussein Baher,et al.  Analog & digital signal processing , 1990 .

[78]  P. G. Lemari'e,et al.  Ondelettes `a localisation exponentielle , 1988 .

[79]  B. Han Dual multiwavelet frames with high balancing order and compact fast frame transform , 2009 .

[80]  Jing Yuan,et al.  Multiwavelet transform and its applications in mechanical fault diagnosis – A review , 2014 .

[81]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[82]  Valery A. Zheludev,et al.  Construction of Wavelet Analysis in the Space of Discrete Splines Using Zak Transform , 2002 .

[83]  A. Averbuch,et al.  Wavelet and frame transforms originated from continuous and discrete splines , 2006 .

[84]  Stephan Freytag An Introduction To Splines For Use In Computer Graphics And Geometric Modeling , 2016 .

[85]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[86]  Amir Averbuch,et al.  Block Based Deconvolution Algorithm Using Spline Wavelet Packets , 2010, Journal of Mathematical Imaging and Vision.

[87]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[88]  Y. Zeevi,et al.  Gabor ' s expansion and the Zak transform for continuous-time and discrete-time signals , 1999 .

[89]  Bin Han,et al.  Multiwavelet Frames from Refinable Function Vectors , 2003, Adv. Comput. Math..

[90]  Boris I. Kvasov,et al.  Methods of Shape-Preserving Spline Approximation , 2000 .

[91]  I. J. Schoenberg Cardinal Spline Interpolation , 1987 .

[92]  Amir Averbuch,et al.  Spline-based deconvolution , 2009, Signal Process..

[93]  Valery A. Zheludev,et al.  On the Interpolation by Discrete Splines with Equidistant Nodes , 2000 .

[94]  Vivek K. Goyal,et al.  Filter bank frame expansions with erasures , 2002, IEEE Trans. Inf. Theory.

[95]  A. Averbuch,et al.  Local cubic splines on non-uniform grids and real-time implementation of wavelet transform , 2015 .

[96]  Petukhov,et al.  Constructive Approximation Symmetric Framelets , 2003 .

[97]  M. Pinsky Introduction to Fourier analysis and wavelets , 2002 .

[98]  Valery A. Zheludev,et al.  Periodic Splines, Harmonic Analysis, and Wavelets , 1998 .

[99]  Amir Averbuch,et al.  Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser. , 2016, Applied optics.

[100]  Amir Averbuch,et al.  Lct-Wavelet Based Algorithms for Data Compression , 2013, Int. J. Wavelets Multiresolution Inf. Process..

[101]  Jae Kun Lim,et al.  NEW LOOK AT THE CONSTRUCTIONS OF MULTIWAVELET FRAMES , 2010 .

[102]  Zuowei Shen,et al.  PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .

[103]  Michael Unser,et al.  Variational B-spline level-set method for fast image segmentation , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[104]  Amir Averbuch,et al.  Ternary interpolatory Subdivision Schemes Originated from splines , 2011, Int. J. Wavelets Multiresolution Inf. Process..

[105]  Wim Sweldens,et al.  Lifting scheme: a new philosophy in biorthogonal wavelet constructions , 1995, Optics + Photonics.

[106]  Zhifeng Zhang,et al.  Adaptive time-frequency decompositions with matching pursuit , 1994, Defense, Security, and Sensing.

[107]  Valery A. Zheludev Local smoothing splines with a regularizing parameter , 1991 .

[108]  G. Battle A block spin construction of ondelettes Part II: The QFT connection , 1988 .

[109]  Amir Averbuch,et al.  A new family of spline-based biorthogonal wavelet transforms and their application to image compression , 2004, IEEE Transactions on Image Processing.

[110]  A. Aldroubi,et al.  Designing Multiresolution Analysis-type Wavelets and Their Fast Algorithms , 1995 .

[111]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[112]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[113]  C. Chui,et al.  Compactly supported tight frames associated with refinable functions , 2000 .

[114]  V. Zheludev,et al.  On the approximation on finite intervals and local spline extrapolation , 1994 .

[115]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[116]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[117]  Ofer Amrani,et al.  Symmetric Interplatory Framelets and Their Erasure Recovery Properties , 2006, MRCS.

[118]  V. N. Malozemov,et al.  Discrete periodic splines and their numerical applications , 1998 .

[119]  A. Averbuch,et al.  Calculation of Splines Values by Subdivision , 2014 .

[120]  Michael Unser,et al.  Fast B-spline Transforms for Continuous Image Representation and Interpolation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[121]  Helmut Bölcskei,et al.  Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..

[122]  A. Averbuch,et al.  Spline-based frames in the space of periodic signals , 2012 .