Electron Acceleration to MeV Energies at Jupiter and Saturn

The radiation belts and magnetospheres of Jupiter and Saturn show significant intensities of relativistic electrons with energies up to tens of megaelectronvolts (MeV). To date, the question on how the electrons reach such high energies is not fully answered. This is largely due to the lack of high‐quality electron spectra in the MeV energy range that models could be fit to. We reprocess data throughout the Galileo orbiter mission in order to derive Jupiter's electron spectra up to tens of MeV. In the case of Saturn, the spectra from the Cassini orbiter are readily available and we provide a systematic analysis aiming to study their acceleration mechanisms. Our analysis focuses on the magnetospheres of these planets, at distances of L > 20 and L > 4 for Jupiter and Saturn, respectively, where electron intensities are not yet at radiation belt levels. We find no support that MeV electrons are dominantly accelerated by wave‐particle interactions in the magnetospheres of both planets at these distances. Instead, electron acceleration is consistent with adiabatic transport. While this is a common assumption, confirmation of this fact is important since many studies on sources, losses, and transport of energetic particles rely on it. Adiabatic heating can be driven through various radial transport mechanisms, for example, injections driven by the interchange instability or radial diffusion. We cannot distinguish these processes at Saturn with our technique. For Jupiter, we suggest that the dominating acceleration process is radial diffusion because injections are never observed at MeV energies.

[1]  S. Krimigis,et al.  Drift-resonant, relativistic electron acceleration at the outer planets: Insights from the response of Saturn's radiation belts to magnetospheric storms , 2018 .

[2]  Henry B. Garrett,et al.  A Physical Model of the Proton Radiation Belts of Jupiter inside Europa's Orbit , 2018 .

[3]  B. Mauk,et al.  Intervals of Intense Energetic Electron Beams Over Jupiter's Poles , 2018 .

[4]  B. Mauk,et al.  Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves , 2018 .

[5]  A. Kotova,et al.  The evolution of Saturn’s radiation belts modulated by changes in radial diffusion , 2017 .

[6]  J. Connerney,et al.  Energetic particle signatures of magnetic field‐aligned potentials over Jupiter's polar regions , 2017 .

[7]  A. Adriani,et al.  Discrete and broadband electron acceleration in Jupiter’s powerful aurora , 2017, Nature.

[8]  S. Bourdarie,et al.  A new physical model of the electron radiation belts of Jupiter inside Europa's orbit , 2017 .

[9]  D. Gurnett,et al.  Survey of whistler mode chorus intensity at Jupiter , 2016 .

[10]  B. Mauk,et al.  Charge states of energetic oxygen and sulfur ions in Jupiter's magnetosphere , 2016 .

[11]  Michelle F. Thomsen,et al.  Effects of radial motion on interchange injections at Saturn , 2016 .

[12]  S. Livi,et al.  Evolution of electron pitch angle distributions across Saturn's middle magnetospheric region from MIMI/LEMMS , 2014 .

[13]  D. Gurnett,et al.  Survey analysis of chorus intensity at Saturn , 2014 .

[14]  J. B. Dalton,et al.  The lens feature on the inner saturnian satellites , 2014 .

[15]  E. E. Woodfield,et al.  The origin of Jupiter's outer radiation belt , 2014, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).

[16]  Michelle F. Thomsen,et al.  Spatial and temporal dependence of the convective electric field in Saturn's inner magnetosphere , 2014 .

[17]  Richard B. Horne,et al.  Three‐dimensional electron radiation belt simulations using the BAS Radiation Belt Model with new diffusion models for chorus, plasmaspheric hiss, and lightning‐generated whistlers , 2014 .

[18]  R. Horne,et al.  Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves , 2013 .

[19]  R. Horne,et al.  Gyroresonant interactions between the radiation belt electrons and whistler mode chorus waves in the radiation environments of Earth, Jupiter, and Saturn: A comparative study , 2012 .

[20]  Robert L. Tokar,et al.  Saturn's inner magnetospheric convection pattern: Further evidence , 2012 .

[21]  Sebastien Bourdarie,et al.  A physical model for electron radiation belts of Saturn , 2012 .

[22]  T. Hill,et al.  Effects of finite plasma pressure on centrifugally driven convection in Saturn's inner magnetosphere , 2012 .

[23]  Henry B. Garrett,et al.  Galileo interim radiation electron model : update—2012 , 2012 .

[24]  Norbert Krupp,et al.  Energetic particle phase space densities at Saturn: Cassini observations and interpretations , 2011 .

[25]  F. Bagenal,et al.  Flow of mass and energy in the magnetospheres of Jupiter and Saturn , 2011 .

[26]  Richard M. Thorne,et al.  Radiation belt dynamics: The importance of wave‐particle interactions , 2010 .

[27]  R. Wilson,et al.  Rate of radial transport of plasma in Saturn's inner magnetosphere , 2010 .

[28]  F. S. Turner,et al.  Transport of energetic electrons into Saturn's inner magnetosphere , 2010 .

[29]  S. Krimigis,et al.  Energetic particles in Saturn's magnetosphere during the Cassini nominal mission (July 2004–July 2008) , 2009 .

[30]  Michelle F. Thomsen,et al.  Saturn's Magnetospheric Configuration , 2009 .

[31]  Binbin Ni,et al.  Evolution of electron fluxes in the outer radiation belt computed with the VERB code , 2009 .

[32]  E. Harnett,et al.  Regulation of the centrifugal interchange cycle in Saturn's inner magnetosphere , 2009 .

[33]  S. Krimigis,et al.  Azimuthal plasma flow in the Kronian magnetosphere , 2008 .

[34]  D. Gurnett,et al.  Gyro-resonant electron acceleration at Jupiter , 2008 .

[35]  S. Bolton,et al.  Discussing the processes constraining the Jovian synchrotron radio emission's features , 2008 .

[36]  C. Russell,et al.  Strong rapid dipolarizations in Saturn's magnetotail: In situ evidence of reconnection , 2007 .

[37]  N. Krupp,et al.  Electron microdiffusion in the Saturnian radiation belts: Cassini MIMI/LEMMS observations of energetic electron absorption by the icy moons , 2007 .

[38]  M. Dougherty,et al.  Electron sources in Saturn's magnetosphere , 2007 .

[39]  Richard M. Thorne,et al.  Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm , 2006 .

[40]  Umran S. Inan,et al.  Wave acceleration of electrons in the Van Allen radiation belts , 2005, Nature.

[41]  Travis W. Hill,et al.  Properties of local plasma injections in Saturn's magnetosphere , 2005 .

[42]  Edmond C. Roelof,et al.  Energetic particle injections in Saturn's magnetosphere , 2005 .

[43]  K. Khurana,et al.  Global structure of Jupiter's magnetospheric current sheet , 2005 .

[44]  Richard M. Thorne,et al.  Timescale for radiation belt electron acceleration by whistler mode chorus waves , 2005 .

[45]  N Achilleos,et al.  Cassini Magnetometer Observations During Saturn Orbit Insertion , 2005, Science.

[46]  R E Johnson,et al.  Composition and Dynamics of Plasma in Saturn's Magnetosphere , 2005, Science.

[47]  K.-H. Glassmeier,et al.  The Cassini Magnetic Field Investigation , 2004 .

[48]  Edmond C. Roelof,et al.  Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere , 2004 .

[49]  S. M. Krimigis,et al.  Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan , 2004 .

[50]  Norbert Krupp,et al.  Changes of the energetic particles characteristics in the inner part of the Jovian magnetosphere: a topological study , 2004 .

[51]  R. Horne,et al.  Relativistic electron acceleration and precipitation during resonant interactions with whistler‐mode chorus , 2003 .

[52]  F. Toffoletto,et al.  Inner magnetospheric modeling with the Rice Convection Model , 2003 .

[53]  W. Matthaeus,et al.  An acceleration mechanism for the generation of the main auroral oval on Jupiter , 2003 .

[54]  J. Saur Turbulent Heating of Jupiter’s Middle Magnetosphere , 2002 .

[55]  J. M. Ratliff,et al.  Monte Carlo simulations of the Galileo energetic particle detector , 2002 .

[56]  D. Williams,et al.  Global flows of energetic ions in Jupiter's equatorial plane: First‐order approximation , 2001 .

[57]  S. Swordy The Energy Spectra and Anisotropies of Cosmic Rays , 2001 .

[58]  Emma J. Bunce,et al.  Origin of the main auroral oval in Jupiter's coupled magnetosphere–ionosphere system , 2001 .

[59]  J. B. Blake,et al.  On the source location of radiation belt relativistic electrons , 2000 .

[60]  Barry H. Mauk,et al.  Storm‐like dynamics of Jupiter's inner and middle magnetosphere , 1999 .

[61]  R. Elphic,et al.  FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating , 1998 .

[62]  D. Williams,et al.  Enhanced whistler‐mode emissions: Signatures of interchange motion in the Io torus , 1997 .

[63]  Krishan K. Khurana,et al.  Euler potential models of Jupiter's magnetospheric field , 1997 .

[64]  Barry H. Mauk,et al.  Introduction to Geomagnetically Trapped Radiation , 1996 .

[65]  M. Walt,et al.  Introduction to Geomagnetically Trapped Radiation: Contents , 1994 .

[66]  Christopher T. Russell,et al.  The Galileo magnetic field investigation , 1992 .

[67]  S. Jaskulek,et al.  The Galileo Energetic Particles Detector , 1992 .

[68]  M. Fujimoto,et al.  Monte Carlo simulation of energization of jovian trapped electrons by recirculation , 1990 .

[69]  D. D. Barbosa Medium‐energy electrons and heavy ions in Jupiter's magnetosphere: Effects of lower hybrid wave‐particle interactions , 1986 .

[70]  L. L. Hood,et al.  Radial diffusion in Saturn's radiation belts: A modeling analysis assuming satellite and ring E absorption , 1983 .

[71]  H.W. Kraner,et al.  Radiation detection and measurement , 1981, Proceedings of the IEEE.

[72]  J. A. V. Allen,et al.  The energetic charged particle absorption signature of Mimas. Progress report , 1980 .

[73]  M. Thomsen,et al.  Motion of trapped electrons and protons in Saturn's inner magnetosphere. Progress report , 1980 .

[74]  Travis W. Hill,et al.  Inertial limit on corotation , 1979 .

[75]  J. A. V. Allen,et al.  On determining magnetospheric diffusion coefficients from the observed effects of Jupiter's satellite Io , 1977 .

[76]  A. Nishida Outward diffusion of energetic particles from the Jovian radiation belt , 1976 .

[77]  Stephen Knight,et al.  Parallel electric fields , 1973 .

[78]  Thomas R. McDonough,et al.  Jupiter's radiation belts , 1973 .

[79]  Juan G. Roederer,et al.  Dynamics of Geomagnetically Trapped Radiation , 1970 .

[80]  T. Speiser Particle trajectories in model current sheets: 1. Analytical solutions , 1965 .

[81]  S. F. Singer,et al.  Geomagnetically trapped electrons from cosmic ray albedo neutrons , 1961 .

[82]  P. Kellogg Van Allen Radiation of Solar Origin , 1959, Nature.

[83]  N. Krupp,et al.  Processes forming and sustaining Saturns proton radiation belts , 2013 .

[84]  S. Krimigis,et al.  Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements , 2009 .

[85]  G. Knoll Radiation Detection And Measurement, 3rd Ed , 2009 .

[86]  B. Mauk,et al.  Electron circulation in Saturn's magnetosphere , 2008 .

[87]  T. Hill,et al.  The Io neutral clouds and plasma torus , 2004 .

[88]  Y. Kasahara,et al.  Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos‐D observations , 2003 .

[89]  M. Kivelson,et al.  The Configuration of Jupiter ’ s Magnetosphere , 2003 .

[90]  M. Schulz Particle drift and loss rates under strong pitch angle diffusion in Dungey's model magnetosphere , 1998 .

[91]  M. Kivelson,et al.  Magnetospheric interchange instability , 1987 .

[92]  A. Achterberg Stochastic Fermi acceleration and the origin of cosmic rays , 1984 .

[93]  V. Vasyliūnas,et al.  Plasma distribution and flow , 1983 .

[94]  J. A. V. Allen,et al.  Further observational support for the lossy radial diffusion model of the inner Jovian magnetosphere , 1979 .

[95]  N. Herlofson,et al.  Particle Diffusion in the Radiation Belts , 1962 .