Raman Spectroscopy and Confocal Raman Imaging in Mineralogy and Petrography

Confocal Raman Spectroscopy and Microscopy have attained a significant increase in recognition over the past two decades and the method is now well established as another instrument in the geoscientists’ toolbox. Here we present and discuss the use and benefit of the method, considering aspects related to sample preparation, effects of the interaction of lasers on specific sample surfaces, as well as instrumental consideration to address these aspects. Further we present examples how confocal Raman microscopy can be applied in mineral phase and phase composition imaging as well as crystallographic orientation imaging in a variety of geological materials, including shocked minerals , carbonaceous materials and fluid inclusions .

[1]  D. Mckay,et al.  Unusual olivine and pyroxene composition in interplanetary dust and unequilibrated ordinary chondrites , 1989, Nature.

[2]  T. Wdowiak,et al.  Laser–Raman imagery of Earth's earliest fossils , 2002, Nature.

[3]  E. Fitzer,et al.  Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995) , 1995 .

[4]  H. Edwards,et al.  Proximal Analysis of Regolith Habitats and Protective Biomolecules in Situ by Laser Raman Spectroscopy: Overview of Terrestrial Antarctic Habitats and Mars Analogs , 2000 .

[5]  T. Yui,et al.  Raman spectrum of carbonaceous material: a possible metamorphic grade indicator for low‐grade metamorphic rocks , 1996 .

[6]  C. R. Quick,et al.  Venus Geochemical Analysis by Remote Raman -- Laser Induced Breakdown Spectroscopy (Raman-LIBS) , 2009 .

[7]  B. Jolliff,et al.  Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions , 2006 .

[8]  I. Escudero-Sanz,et al.  Optical design of a combined Raman–laser-induced-breakdown-spectroscopy instrument for the European Space Agency ExoMars Mission , 2008 .

[9]  V. Masaitis,et al.  Popigai Basin--An Explosion Meteorite Crater , 1972 .

[10]  C. Mapelli,et al.  Origin of the D line in the Raman spectrum of graphite: A study based on Raman frequencies and intensities of polycyclic aromatic hydrocarbon molecules , 2001 .

[11]  J. Popp,et al.  Raman Spectroscopy—A Powerful Tool for in situ Planetary Science , 2008 .

[12]  J. Pasteris In Situ Analysis in Geological Thin-Sections by Laser Raman Microprobe Spectroscopy: A Cautionary Note , 1989 .

[13]  B. Jolliff,et al.  Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy , 2001 .

[14]  A. Ellery,et al.  Why Raman spectroscopy on Mars?--a case of the right tool for the right job. , 2003, Astrobiology.

[15]  M. Arakawa,et al.  Relationship between Raman spectral pattern and crystallographic orientation of a rock-forming mineral: a case study of Fo 89 Fa 11 olivine , 2008 .

[16]  J. Avouac,et al.  Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material , 2004 .

[17]  J. Rouzaud,et al.  Precursor and metamorphic condition effects on Raman spectra of poorly ordered carbonaceous matter in chondrites and coals , 2009 .

[18]  J. Pasteris,et al.  Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. , 2003, Astrobiology.

[19]  M. Santosh,et al.  Carbonic fluids in ultrahigh-temperature metamorphism: evidence from Raman spectroscopic study of fluid inclusions in granulites from the Napier Complex, East Antarctica , 2008 .

[20]  S. Reich,et al.  Raman spectroscopy of graphite , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  W. Francis Coal, its formation and composition , 1931 .

[22]  L. Coes A New Dense Crystalline Silica. , 1953, Science.

[23]  M. Fries,et al.  Micro‐Raman spectroscopic study of fine‐grained, shock‐metamorphosed rock fragments from the Australasian microtektite layer , 2008 .

[24]  R. Nemanich,et al.  First- and second-order Raman scattering from finite-size crystals of graphite , 1979 .

[25]  J. Pasteris,et al.  Structural characterization of kerogens to granulite-facies graphite; applicability of Raman microprobe spectroscopy , 1993 .

[26]  A. Anedda,et al.  An analytical form for the Raman shift dependence on size of nanocrystals , 2009 .

[27]  M. Dresselhaus,et al.  ORIGIN OF DISPERSIVE EFFECTS OF THE RAMAN D BAND IN CARBON MATERIALS , 1999 .

[28]  R. Roessler,et al.  Thermogravimetric and Raman spectroscopic investigations on different coals in comparison to dispersed anthracite found in permineralized tree fern Psaronius sp. , 2003 .

[29]  Peter J. F. Harris,et al.  Fullerene-related structure of commercial glassy carbons , 2004 .

[30]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[31]  C. Landis Graphitization of dispersed carbonaceous material in metamorphic rocks , 1971 .

[32]  Andrew Steele,et al.  Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft , 2006, Science.

[33]  William B. White,et al.  Characterization of diamond films by Raman spectroscopy , 1989 .

[34]  R. Franklin Crystallite growth in graphitizing and non-graphitizing carbons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  R. Altherr,et al.  Shock-induced growth and metastability of stishovite and coesite in lithic clasts from suevite of the Ries impact crater (Germany) , 2008 .

[36]  A. Vaughan,et al.  Application of confocal Raman spectroscopy to thin polymer layers on highly scattering substrates: a case study of synthetic adhesives on historic textiles , 2005 .

[37]  C. Goodrich Ureilites - A critical review , 1992 .

[38]  B. Wopenka Raman spectroscopic investigation of two grains from comet 81P/Wild 2: Information that can be obtained beyond the presence of sp2‐bonded carbon , 2012 .

[39]  M. Zolensky,et al.  The halite‐bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H‐chondrite parent body , 2002 .

[40]  L. Bonal,et al.  Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter , 2006 .

[41]  E. Makovicky,et al.  19th General meeting of the International Mineralogical Association, Kobe, Japan, July 23-28 , 2006 .

[42]  David C. Smith,et al.  Raman microprobe (RMP) determinations of natural and synthetic coesite , 1985, Physics and Chemistry of Minerals.

[43]  E. A. Heintz,et al.  Kinetics of graphitization-I. Activation energies , 1969 .

[44]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[45]  J. C. Jackson,et al.  A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A. , 2006 .

[46]  L. Diamond Review of the systematics of CO2–H2O fluid inclusions , 2001 .

[47]  C. C. Wong,et al.  Determination of Raman Phonon Strain Shift Coefficient of Strained Silicon and Strained SiGe , 2005 .

[48]  G. Cody,et al.  Organic thermometry for chondritic parent bodies , 2008 .

[49]  A. Steele,et al.  Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard , 2007 .

[50]  S. Prawer,et al.  Confocal Raman strain mapping of isolated single CVD diamond crystals , 1998 .

[51]  A. K. Ramdas,et al.  Raman Spectrum of Diamond , 1970 .

[52]  B. Bostick,et al.  Thermal history of the 3.5–3.2 Ga Onverwacht and Fig Tree Groups, Barberton greenstone belt, South Africa, inferred by Raman microspectroscopy of carbonaceous material , 2004 .

[53]  R. Ahuja,et al.  A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries Crater in Germany , 2001 .

[54]  J. Dubessy,et al.  Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions , 1989 .

[55]  S. Prawer,et al.  The Raman spectrum of amorphous diamond , 1998 .

[56]  J. Koenig Raman Scattering of Synthetic Polymers‐A Review , 1971 .

[57]  J. Pasteris,et al.  Raman spectra of graphite as indicators of degree of metamorphism , 1991 .

[58]  J. Pasteris,et al.  Laser–Raman spectroscopy (Communication arising): Images of the Earth's earliest fossils? , 2002, Nature.

[59]  L. Gerward,et al.  Post‐Rutile High‐Pressure Phases in TiO2 , 1997 .

[60]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[61]  B. Jolliff,et al.  Mineralogy of a Martian meteorite as determined by Raman spectroscopy , 2004 .

[62]  J. Rouzaud,et al.  Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study , 2002 .

[63]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[64]  E. Burke Raman microspectrometry of fluid inclusions , 2001 .

[65]  M. Burchell,et al.  Capture effects in carbonaceous material: A Stardust analogue study , 2009 .

[66]  M. Zolensky,et al.  Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998) , 1999, Science.

[67]  L. Bonal,et al.  Organic matter and metamorphic history of CO chondrites , 2007 .

[68]  J. Touret Fluids in metamorphic rocks , 2001 .

[69]  J. Rouzaud,et al.  Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature , 2003 .

[70]  N. Trewin,et al.  Geological setting of the Early Devonian Rhynie cherts, Aberdeenshire, Scotland: an early terrestrial hot spring system , 2002, Journal of the Geological Society.

[71]  Jean-Noël Rouzaud,et al.  How to obtain reliable structural characterization of polished graphitized carbons by Raman microspectrometry , 2012 .