Ramsey‐type results for Gallai colorings

A Gallai-coloring of a complete graph is an edge coloring such that no triangle is colored with three distinct colors. Gallai-colorings occur in various contexts such as the theory of partially ordered sets (in Gallai’s original paper) or information theory. Gallai-colorings extend 2-colorings of the edges of complete graphs. They actually turn out to be close to Contract grant sponsor: OTKA; Contract grant number: K68322 (to A. G. and G. N. S.); Contract grant sponsor: National Science Foundation; Contract grant number: DMS-0456401 (to G. N. S.); Contract grant sponsor: Janos Bolyai Research Scholarship (to G. N. S.). Journal of Graph Theory 2009 Wiley Periodicals, Inc.

[1]  Fan Chung Graham,et al.  Edge-colored complete graphs with precisely colored subgraphs , 1983, Comb..

[2]  Richard H. Schelp,et al.  Domination in colored complete graphs , 1989, J. Graph Theory.

[3]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[4]  Paul Erdös,et al.  Finding Large p-Colored Diameter Two Subgraphs , 1999, Graphs Comb..

[5]  Frank Harary,et al.  Recent results on generalized Ramsey theory for graphs , 1972 .

[6]  Gábor N. Sárközy,et al.  Size of Monochromatic Double Stars in Edge Colorings , 2008, Graphs Comb..

[7]  Dhruv Mubayi,et al.  Generalizing the Ramsey Problem through Diameter , 2001, Electron. J. Comb..

[8]  Kathie Cameron,et al.  Lambda composition , 1997, J. Graph Theory.

[9]  László Lovász,et al.  Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..

[10]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[11]  Gábor Simonyi,et al.  Edge colorings of complete graphs without tricolored triangles , 2004, J. Graph Theory.

[12]  Arie Bialostocki,et al.  On Monochromatic-Rainbow Generalizations of Two Ramsey Type Theorems , 2003, Ars Comb..

[13]  András Gyárfás,et al.  Fruit Salad , 1997, Electron. J. Comb..

[14]  Gábor Simonyi,et al.  Graph Pairs and their Entropies: Modularity Problems , 2000, Comb..

[15]  J. Edmonds,et al.  A note on perfect graphs , 1986 .

[16]  Rainbow Ramsey Numbers , 2000 .

[17]  Dennis Saleh Zs , 2001 .

[18]  Zsolt Tuza,et al.  Perfect couples of graphs , 1992, Comb..

[19]  L. Lovász Combinatorial problems and exercises , 1979 .

[20]  S. E. Markosyan,et al.  ω-Perfect graphs , 1990 .