On the estimation of the functional Weibull tail-coefficient
暂无分享,去创建一个
[1] S. Girard,et al. Weibull tail-distributions revisited: a new look at some tail estimators , 2011 .
[2] J. Teugels,et al. Practical Analysis of Extreme Values , 1996 .
[3] Nadia L. Kudraszow,et al. Uniform consistency of kNN regressors for functional variables , 2013 .
[4] Alexandru V. Asimit,et al. Pitfalls in Using Weibull Tailed Distributions , 2009 .
[5] J. Beirlant,et al. A new estimation method for Weibull-type tails based on the mean excess function , 2009 .
[6] P. Vieu,et al. Nonparametric regression for functional data: automatic smoothing parameter selection , 2007 .
[7] M. Samanta,et al. Non-parametric estimation of conditional quantiles , 1989 .
[8] R. Bass. Regular conditional probabilities , 2011 .
[9] C. J. Stone,et al. Consistent Nonparametric Regression , 1977 .
[10] Stéphane Girard,et al. Functional nonparametric estimation of conditional extreme quantiles , 2010, J. Multivar. Anal..
[11] S. Girard,et al. Functional kernel estimators of large conditional quantiles , 2011, 1107.2261.
[12] S. Girard. A Hill Type Estimator of the Weibull Tail-Coefficient , 2004 .
[13] J. Beirlant,et al. Semiparametric lower bounds for tail index estimation , 2006 .
[14] Laurent Gardes,et al. Comparison of Weibull tail-coefficient estimators , 2011, 1104.0764.
[15] L. Haan,et al. Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .
[16] Laurent Gardes,et al. Estimation of the Weibull tail-coefficient with linear combination of upper order statistics , 2008, 1103.5894.
[17] M. Broniatowski. On the estimation of the Weibull tail coefficient , 1993 .
[18] S. Girard,et al. On kernel smoothing for extremal quantile regression , 2012, 1312.5123.
[19] Enea G. Bongiorno,et al. Contributions in Infinite-Dimensional Statistics and Related Topics , 2014 .
[20] Jan Beirlant,et al. Modeling large claims in non-life insurance , 1992 .
[21] M. Neves,et al. Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .
[22] H. Shang. Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density , 2014, 1403.1913.
[23] M. Meerschaert. Regular Variation in R k , 1988 .
[24] Winfried Stute,et al. Conditional empirical processes , 1986 .
[25] Jonathan El Methni,et al. Non‐parametric Estimation of Extreme Risk Measures from Conditional Heavy‐tailed Distributions , 2014 .
[26] Frédéric Ferraty,et al. The Functional Nonparametric Model and Application to Spectrometric Data , 2002, Comput. Stat..
[27] Aldo Goia,et al. A partitioned Single Functional Index Model , 2015, Comput. Stat..
[28] Jonathan El Methni,et al. Nonparametric estimation of extreme risk measures from conditional heavy-tailed distributions , 2013 .
[29] J. Diebolt,et al. Bias-reduced estimators of the Weibull tail-coefficient , 2008, 1103.6172.
[30] G. Roussas. Nonparametric Estimation of the Transition Distribution Function of a Markov Process , 1969 .
[31] Frédéric Ferraty,et al. Conditional Quantiles for Dependent Functional Data with Application to the Climatic El Niño Phenomenon , 2005 .
[32] Alain Berlinet,et al. Asymptotic normality of convergent estimates of conditional quantiles , 2001 .
[33] J. Teugels,et al. The mean residual life function at great age: Applications to tail estimation , 1995 .
[34] S. Girard,et al. Kernel estimators of extreme level curves , 2011 .
[35] P. Vieu,et al. Rate of uniform consistency for nonparametric estimates with functional variables , 2010 .