Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution
暂无分享,去创建一个
[1] Adrian F. M. Smith,et al. Bayesian Analysis of Linear and Non‐Linear Population Models by Using the Gibbs Sampler , 1994 .
[2] Vic Barnett,et al. Outliers in Statistical Data , 1980 .
[3] Gwilym M. Jenkins,et al. Time series analysis, forecasting and control , 1972 .
[4] Jane F. Pendergast,et al. Robust estimation in growth curve models , 1985 .
[5] Alice Richardson,et al. 13 Approaches to the robust estimation of mixed models , 1997 .
[6] R. Jennrich,et al. Unbalanced repeated-measures models with structured covariance matrices. , 1986, Biometrics.
[7] D. Bates,et al. Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.
[8] Jeremy MG Taylor,et al. Robust Statistical Modeling Using the t Distribution , 1989 .
[9] Calyampudi R. Rao. Handbook of statistics , 1980 .
[10] C. Jennison,et al. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[11] D. Bates,et al. Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data , 1988 .
[12] Richard A. Becker,et al. The Visual Design and Control of Trellis Display , 1996 .
[13] Ronald A. Thisted,et al. Elements of statistical computing , 1986 .
[14] New York Dover,et al. ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .
[15] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[16] David E. Tyler,et al. A curious likelihood identity for the multivariate t-distribution , 1994 .
[17] J. Ware,et al. Random-effects models for longitudinal data. , 1982, Biometrics.
[18] R. Potthoff,et al. A generalized multivariate analysis of variance model useful especially for growth curve problems , 1964 .
[19] G. Milliken. Nonlinear Regression Analysis and Its Applications , 1990 .
[20] Donald B. Rubin,et al. Max-imum Likelihood from Incomplete Data , 1972 .
[21] Xiao-Li Meng,et al. The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .
[22] V. Carey,et al. Mixed-Effects Models in S and S-Plus , 2001 .
[23] Gelfand,et al. AD-A 254 769 BAYESIAN ANALYSIS OF LINEAR AND NONLINEAR POPULATION MODELS USING THE GIBBS SAMPLER , 2022 .
[24] Shizuhiko Nishisato,et al. Elements of Dual Scaling: An Introduction To Practical Data Analysis , 1993 .
[25] W. R. Buckland,et al. Distributions in Statistics: Continuous Multivariate Distributions , 1974 .
[26] H. Hartley,et al. Maximum-likelihood estimation for the mixed analysis of variance model. , 1967, Biometrika.
[27] Alice Richardson,et al. Bounded Influence Estimation in the Mixed Linear Model , 1997 .
[28] Douglas M. Bates,et al. Nonlinear Regression Analysis and Its Applications , 1988 .
[29] Xiao-Li Meng,et al. Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .
[30] D. Rubin,et al. The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence , 1994 .
[31] K. Fang,et al. Generalized Multivariate Analysis , 1990 .
[32] W. R. Buckland,et al. Distributions in Statistics: Continuous Multivariate Distributions , 1973 .
[33] A. Welsh,et al. Robust Restricted Maximum Likelihood in Mixed Linear Models , 1995 .
[34] Werner A. Stahel,et al. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[35] J. Miller,et al. Asymptotic Properties of Maximum Likelihood Estimates in the Mixed Model of the Analysis of Variance , 1977 .
[36] Xiao-Li Meng,et al. Fast EM‐type implementations for mixed effects models , 1998 .
[37] D. Rubin,et al. Parameter expansion to accelerate EM : The PX-EM algorithm , 1997 .