Effective mechanical properties of multilayer nano-heterostructures

[1]  S. Adhikari,et al.  Frequency domain homogenization for the viscoelastic properties of spatially correlated quasi-periodic lattices , 2019, International Journal of Mechanical Sciences.

[2]  C. V. Singh,et al.  Borophene hydride: a stiff 2D material with high thermal conductivity and attractive optical and electronic properties. , 2018, Nanoscale.

[3]  Sondipon Adhikari,et al.  Stochastic dynamic stability analysis of composite curved panels subjected to non-uniform partial edge loading , 2018 .

[4]  Sondipon Adhikari,et al.  Effective in-plane elastic moduli of quasi-random spatially irregular hexagonal lattices , 2017 .

[5]  Sondipon Adhikari,et al.  System reliability analysis of soil slopes with general slip surfaces using multivariate adaptive regression splines , 2017 .

[6]  T. Rabczuk,et al.  First-principles investigation of mechanical properties of silicene, germanene and stanene , 2017, 1703.06787.

[7]  T. Rabczuk,et al.  Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures. , 2017, Nano letters.

[8]  Sondipon Adhikari,et al.  Stochastic mechanics of metamaterials , 2017 .

[9]  T. Rabczuk,et al.  Multiscale modelling of heat conduction in all-MoS2 single-layer heterostructures , 2017 .

[10]  Shu-feng Zhang,et al.  The electronic properties of the stanene/MoS2 heterostructure under strain , 2017 .

[11]  S. Adhikari,et al.  Effective elastic properties of two dimensional multiplanar hexagonal nanostructures , 2017 .

[12]  Susmita Naskar,et al.  Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical properties , 2017 .

[13]  Sondipon Adhikari,et al.  Probabilistic characterisation for dynamics and stability of laminated soft core sandwich plates , 2017 .

[14]  Sondipon Adhikari,et al.  Probabilistic Analysis and Design of HCP Nanowires: An Efficient Surrogate Based Molecular Dynamics Simulation Approach , 2016 .

[15]  Sondipon Adhikari,et al.  Free-Vibration Analysis of Sandwich Panels with Randomly Irregular Honeycomb Core , 2016 .

[16]  Timon Rabczuk,et al.  A software framework for probabilistic sensitivity analysis for computationally expensive models , 2016, Adv. Eng. Softw..

[17]  Sondipon Adhikari,et al.  Equivalent in-plane elastic properties of irregular honeycombs: An analytical approach , 2016 .

[18]  Xianping Chen,et al.  Electronic structure and optical properties of graphene/stanene heterobilayer. , 2016, Physical chemistry chemical physics : PCCP.

[19]  Sondipon Adhikari,et al.  A Critical Assessment of Kriging Model Variants for High-Fidelity Uncertainty Quantification in Dynamics of composite Shells , 2016, Archives of Computational Methods in Engineering.

[20]  Sondipon Adhikari,et al.  Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity , 2016 .

[21]  Huajian Gao,et al.  Mechanical metamaterials: Smaller and stronger. , 2016, Nature materials.

[22]  Sondipon Adhikari,et al.  A polynomial chaos expansion based molecular dynamics study for probabilistic strength analysis of nano-twinned copper , 2016 .

[23]  Zhongfan Liu,et al.  Hexagonal Boron Nitride-Graphene Heterostructures: Synthesis and Interfacial Properties. , 2016, Small.

[24]  Artem R. Oganov,et al.  Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs , 2015, Science.

[25]  Yoshihiro Iwasa,et al.  2D crystals of transition metal dichalcogenide and their iontronic functionalities , 2015 .

[26]  Li Chen,et al.  The effect of substrate and external strain on electronic structures of stanene film. , 2015, Physical chemistry chemical physics : PCCP.

[27]  G. Fiori,et al.  Vertical transport in graphene-hexagonal boron nitride heterostructure devices , 2015, Scientific Reports.

[28]  M. Neupane,et al.  Stacking order dependent mechanical properties of graphene/MoS2 bilayer and trilayer heterostructures , 2015 .

[29]  Markus Antonietti,et al.  Carbon-doped BN nanosheets for metal-free photoredox catalysis , 2015, Nature Communications.

[30]  Madan Dubey,et al.  Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids , 2015 .

[31]  Dong Qian,et al.  Epitaxial growth of two-dimensional stanene. , 2015, Nature materials.

[32]  Gang Zhang,et al.  Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures , 2015, 1505.07545.

[33]  M. Modarresi,et al.  Effect of external strain on electronic structure of stanene , 2015 .

[34]  Y. Son,et al.  Poisson's ratio in layered two-dimensional crystals , 2015, 1507.07324.

[35]  Zhongfan Liu,et al.  Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method , 2015, Nature Communications.

[36]  Minh-Quy Le Prediction of Young’s modulus of hexagonal monolayer sheets based on molecular mechanics , 2015 .

[37]  F. Xia,et al.  Van der Waals heterostructures: Stacked 2D materials shed light. , 2015, Nature materials.

[38]  Sharath Sriram,et al.  Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. , 2015, Small.

[39]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[40]  A. Stesmans,et al.  Two-dimensional hexagonal tin: ab initio geometry, stability, electronic structure and functionalization , 2014 .

[41]  Sefaattin Tongay,et al.  Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. , 2014, Nano letters.

[42]  Angel Rubio,et al.  Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator , 2014, 1407.1929.

[43]  Minh-Quy Le Young’s modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations , 2014 .

[44]  Harold S. Park,et al.  Mechanical properties of MoS2/graphene heterostructures , 2014, 1405.3028.

[45]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[46]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[47]  K. Alzebdeh An atomistic-based continuum approach for calculation of elastic properties of single-layered graphene sheet , 2014 .

[48]  Harold S. Park,et al.  Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect , 2013, Nanotechnology.

[49]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[50]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[51]  Tianshu Li,et al.  Ideal strength and phonon instability in single-layer MoS 2 , 2012 .

[52]  T. Liang,et al.  Erratum: Parametrization of a reactive many-body potential for Mo--S systems [Phys. Rev. B 79, 245110 (2009)] , 2012 .

[53]  G. Seifert,et al.  Theoretical Study of the Mechanical Behavior of Individual TiS2 and MoS2 Nanotubes , 2012 .

[54]  James Hone,et al.  Investigation of Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide , 2012 .

[55]  Dapeng Yu,et al.  Tunable bandgap in silicene and germanene. , 2012, Nano letters.

[56]  S. Adhikari,et al.  Effective mechanical properties of hexagonal boron nitride nanosheets , 2011, Nanotechnology.

[57]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[58]  Wanlin Guo,et al.  A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes , 2011 .

[59]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[60]  E. Oh Elastic properties of boron-nitride nanotubes through the continuum lattice approach , 2010 .

[61]  M. Shokrieh,et al.  Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach , 2010 .

[62]  J. Kysar,et al.  Elastic and frictional properties of graphene , 2009 .

[63]  Jia-Lin Tsai,et al.  Characterizing mechanical properties of graphite using molecular dynamics simulation , 2009 .

[64]  Baowen Li,et al.  Young's modulus of Graphene: a molecular dynamics study , 2009, 0906.5237.

[65]  T. Liang,et al.  Parametrization of a reactive many-body potential for Mo-S systems , 2009 .

[66]  S. Adhikari,et al.  Effective elastic mechanical properties of single layer graphene sheets , 2009, Nanotechnology.

[67]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[68]  P. Ming,et al.  Ab initio calculation of ideal strength and phonon instability of graphene under tension , 2007 .

[69]  Chunyu Li,et al.  Static and dynamic properties of single-walled boron nitride nanotubes. , 2006, Journal of nanoscience and nanotechnology.

[70]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[71]  B. Akdim,et al.  Comparative theoretical study of single-wall carbon and boron-nitride nanotubes , 2003 .

[72]  Huajian Gao,et al.  Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model , 2003 .

[73]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[74]  Z. C. Tu,et al.  Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number , 2001, cond-mat/0112454.

[75]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .

[76]  Julia M. Goodfellow,et al.  Molecular dynamics study , 1997 .

[77]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[78]  Bruce R. Gelin,et al.  Molecular modeling of polymer structures and properties , 1994 .

[79]  Molecular Mechanics Studies of Molybdenum Disulphide Catalysts Parameterisation of Molybdenum and Sulphur , 1992 .

[80]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[81]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[82]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[83]  Zhongyun Ma,et al.  Ab initio studies on the electronic structure of the complexes containing Mo—S bond using relativistic effective core potentials , 1989 .

[84]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[85]  Wold,et al.  Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. , 1987, Physical review. B, Condensed matter.

[86]  F. Jellinek,et al.  On the structure of molybdenum diselenide and disulfide , 1986 .

[87]  Jeanette G. Grasselli,et al.  The Analytical approach , 1983 .

[88]  T. Wieting,et al.  Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal Mo S 2 , 1971 .