Performance of different water-based resins in the formulation of intumescent coatings for passive fire protection

[1]  C. A. Ferreira,et al.  A new benzoxazine-based intumescent coating for passive protection against fire , 2019 .

[2]  C. A. Ferreira,et al.  Evaluation of the expandable graphite/polyaniline combination in intumescent coatings , 2019, Synthetic Metals.

[3]  Ping Liu,et al.  Synergistic Flame‐Retardant Effect of an Aryl Boronic Acid Compound and Ammonium Polyphosphate on Epoxy Resins , 2019, ChemistrySelect.

[4]  Carlos Henrique Michelin Beraldo Desenvolvimento de tintas intumescentes a base de resinas benzoxazina e epóxi : avaliação da proteção contra fogo após exposição à radiação UV , 2019 .

[5]  B. Howell,et al.  Biobased flame retardants from tartaric acid and derivatives , 2018, Polymer Degradation and Stability.

[6]  Xiaojun Zhu,et al.  Effect of CaAlCO3-LDHs on fire resistant properties of intumescent fireproof coatings for steel structure , 2018, Applied Surface Science.

[7]  Lin-Hai Han,et al.  Fire resistance of circular concrete-filled steel tubular (CFST) column protected by intumescent coating , 2018 .

[8]  C. A. Ferreira,et al.  Environmentally friendly intumescent coatings formulated with vegetable compounds , 2017 .

[9]  R. N. Walters,et al.  Prediction of thermosets flammability using a model based on group contributions , 2017 .

[10]  M. Haack Caracterização de grafeno obtido por diferentes métodos utilizando espectroscopia Raman , 2017 .

[11]  C. A. Ferreira,et al.  Biomass as the Carbon Source in Intumescent Coatings for Steel Protection against Fire , 2016 .

[12]  N. Martins Ecosystems, strong sustainability and the classical circular economy , 2016 .

[13]  Yu-Zhong Wang,et al.  Poly(piperazinyl phosphamide): a novel highly-efficient charring agent for an EVA/APP intumescent flame retardant system , 2016 .

[14]  HongMei Zhao,et al.  PREPARATION OF BORIC ACID MODIFIED EXPANDABLE GRAPHITE AND ITS INFLUENCE ON POLYETHYLENE COMBUSTION CHARACTERISTICS , 2016 .

[15]  Thirumal Mariappan,et al.  Recent developments of intumescent fire protection coatings for structural steel: A review , 2016 .

[16]  A. Khanna,et al.  Intumescent coatings: A review on recent progress , 2016, Journal of Coatings Technology and Research.

[17]  S. Bourbigot,et al.  Intumescence: Tradition versus novelty. A comprehensive review , 2015 .

[18]  S. Bourbigot,et al.  The Effects of Thermophysical Properties and Environmental Conditions on Fire Performance of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites , 2015, Materials.

[19]  W. Qian,et al.  Formulation of intumescent flame retardant coatings containing natural-based tea saponin. , 2015, Journal of agricultural and food chemistry.

[20]  Rongjie Yang,et al.  Comparison of intumescence mechanism and blowing-out effect in flame-retarded epoxy resins , 2015 .

[21]  Hongfei Li,et al.  Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants , 2015 .

[22]  F. Ahmad,et al.  Effects of zirconium silicate reinforcement on expandable graphite based intumescent fire retardant coating , 2014 .

[23]  C. Pereira,et al.  Flame Retardancy of Fiber-Reinforced Polymer Composites Based on Nanoclays and Carbon Nanotubes , 2014 .

[24]  M. Schreiner,et al.  A comparison study of alkyd resin used in art works by Py-GC/MS and GC/MS: The influence of aging , 2013 .

[25]  G. Malucelli,et al.  Green DNA-based flame retardant coatings assembled through Layer by Layer , 2013 .

[26]  Z. Wu,et al.  Alkali Lignin as a Carbonization Agent on the Thermal Degradation and Flame Retardancy of Intumescent Flame Retardant Coating , 2013 .

[27]  R. Sonnier,et al.  Investigation of fire-resistance mechanisms of the ternary system (APP/MPP/TiO2) in PMMA , 2012 .

[28]  Min Zhang,et al.  Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR , 2012 .

[29]  Chi‐Hwa Wang,et al.  Enabling Sustainable Development through Creative and Innovative Chemical Engineering—APCChE 2012 Special Issue on Energy, Water, and Environment , 2012 .

[30]  A. Morgan,et al.  Synthesis and flame retardant testing of new boronated and phosphonated aromatic compounds , 2012 .

[31]  Jun Liu,et al.  Polymer Combustion as a Basis for Hybrid Propulsion: A Comprehensive Review and New Numerical Approaches , 2011 .

[32]  Mile Ivanda,et al.  Formation of iron oxides by surface oxidation of iron plate , 2011, 2011 Proceedings of the 34th International Convention MIPRO.

[33]  F. Stavale,et al.  Quantifying defects in graphene via Raman spectroscopy at different excitation energies. , 2011, Nano letters.

[34]  D. Hartmann RESINAS ALQUÍDICAS BASE ÁGUA EMULSIONADAS POR INVERSÃO DE FASE. , 2011 .

[35]  M. Brebu,et al.  THERMAL DEGRADATION OF LIGNIN - A REVIEW , 2010 .

[36]  Lei Song,et al.  Flammability and Thermo-Oxidative Decomposition of Epoxy Resin Containing Ammonium Polyphosphate and Metallic Oxide , 2009 .

[37]  Lei Song,et al.  Flame retardation and char formation mechanism of intumescent flame retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate , 2008 .

[38]  L. Eppelbaum,et al.  Stability of iron oxides and their role in the formation of rock magnetism , 2007 .

[39]  Wang,et al.  Thermal Behavior of Nano-TiO_2 in Fire-Resistant Coating , 2007 .

[40]  M. Doménech-Carbó,et al.  Characterization of acrylic resins used for restoration of artworks by pyrolysis-silylation-gas chromatography/mass spectrometry with hexamethyldisilazane. , 2006, Journal of chromatography. A.

[41]  E. Bouwman,et al.  The oxidative drying of alkyd paint catalysed by metal complexes , 2005 .

[42]  S. Duquesne,et al.  Thermoplastic resins for thin film intumescent coatings – towards a better understanding of their effect on intumescence efficiency , 2005 .

[43]  Baljinder K. Kandola,et al.  Developments in flame retardant textiles – a review , 2005 .

[44]  Sophie Duquesne,et al.  Intumescent paints: fire protective coatings for metallic substrates , 2004 .

[45]  I. Marcu,et al.  TiP2O7 catalysts characterised by in situ Raman spectroscopy during the oxidative dehydrogenation of n-butane , 2003 .

[46]  J. F. Dinhut,et al.  Phosphating of bulk α-iron and its oxidation resistance at 400 °C , 2002 .

[47]  B. Qu,et al.  Expandable graphite systems for halogen-free flame-retarding of polyolefins. II. Structures of intumescent char and flame-retardant mechanism , 2001 .

[48]  P. Saint-Grégoire,et al.  Synthesis and phase transitions of iron phosphate , 2000 .

[49]  J. Lemaire,et al.  Long-term behavior of oil-based varnishes and paints. Photo- and thermooxidation of cured linseed oil , 2000 .

[50]  Paul T. Williams,et al.  Product Composition from the Fast Pyrolysis of Polystyrene , 1999 .

[51]  R. Kozłowski,et al.  The thermal characteristics of different intumescent coatings , 1999 .

[52]  H. Ohtani,et al.  Compositional analysis of multicomponent acrylic resins by pyrolysis-capillary gas chromatography , 1995 .

[53]  Paul T. Williams,et al.  Polycyclic aromatic hydrocarbons in polystyrene derived pyrolysis oil , 1993 .

[54]  C. Bamberger,et al.  Synthesis and characterization of titanium phosphates, TiP2O7 AND (TiO)2P2O7 , 1987 .

[55]  Yoichiro Sato,et al.  Raman spectra of carbons at 2600–3300 cm−1 region , 1978 .

[56]  R. Nemanich,et al.  Observation of an anomolously sharp feature in the 2nd order Raman spectrum of graphite , 1977 .

[57]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .