A new gravitational search algorithm using fuzzy logic to parameter adaptation

In this paper we propose a new Gravitational Search Algorithm (GSA) using fuzzy logic to change alpha parameter and give a different gravitation and acceleration to each agent in order to improve its performance, we use this new approach for mathematical functions and present a comparison with original approach.

[1]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[2]  Siti Zaiton Mohd Hashim,et al.  Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm , 2012, Appl. Math. Comput..

[3]  João Paulo Papa,et al.  Feature selection through gravitational search algorithm , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  Modjtaba Rouhani,et al.  A Multi-objective Gravitational Search Algorithm , 2010, CICSyN.

[5]  S. Mirjalili,et al.  A new hybrid PSOGSA algorithm for function optimization , 2010, 2010 International Conference on Computer and Information Application.

[6]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[7]  Salwani Abdullah,et al.  Gravitational search algorithm with heuristic search for clustering problems , 2011, 2011 3rd Conference on Data Mining and Optimization (DMO).

[8]  O. P. Verma,et al.  Newtonian Gravitational Edge Detection Using Gravitational Search Algorithm , 2012, 2012 International Conference on Communication Systems and Network Technologies.

[9]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[10]  Hossein Nezamabadi-pour,et al.  A prototype classifier based on gravitational search algorithm , 2012, Appl. Soft Comput..