Splitting quaternion algebras over quadratic number fields

We propose an algorithm for finding zero divisors in quaternion algebras over quadratic number fields, or equivalently, solving homogeneous quadratic equations in three variables over $\mathbb{Q}(\sqrt{d})$ where $d$ is a square-free integer. The algorithm is deterministic and runs in polynomial time if one is allowed to call oracles for factoring integers and polynomials over finite fields.

[1]  H. Lenstra,et al.  Factoring integers with the number field sieve , 1993 .

[2]  Gábor Ivanyos,et al.  Lattice basis reduction for indefinite forms and an application , 1996, Discret. Math..

[3]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[4]  F. J. Lobillo,et al.  Factoring Ore polynomials over $\mathbb{F}_q(t)$ is difficult , 2015, 1505.07252.

[5]  Lajos Rónyai,et al.  Computing Explicit Isomorphisms with Full Matrix Algebras over $$\mathbb {F}_q(x)$$Fq(x) , 2018, Found. Comput. Math..

[6]  Lajos Rónyai,et al.  Splitting full matrix algebras over algebraic number fields , 2011, ArXiv.

[7]  Pierre Castel,et al.  Un algorithme de résolution des équations quadratiques en dimension 5 sans factorisation , 2011 .

[8]  Lajos Rónyai,et al.  Factoring polynomials over finite fields , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[9]  F. J. Lobillo,et al.  A New Perspective of Cyclicity in Convolutional Codes , 2016, IEEE Transactions on Information Theory.

[10]  Jean-Pierre Tignol,et al.  The Book of Involutions , 1998 .

[11]  E. Berlekamp Factoring polynomials over finite fields , 1967 .

[12]  Péter Kutas Some Results Concerning the Explicit Isomorphism Problem over Number Fields , 2015, MACIS.

[13]  John Cremona,et al.  Efficient solution of rational conics , 2003, Math. Comput..

[14]  M. Vignéras Arithmétique des Algèbres de Quaternions , 1980 .

[15]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[16]  Jana Pílniková Trivializing a central simple algebra of degree 4 over the rational numbers , 2007, J. Symb. Comput..

[17]  John Cremona,et al.  Explicit n-descent on elliptic curves III. Algorithms , 2011, Math. Comput..

[18]  Josef Schicho,et al.  A Lie algebra method for rational parametrization of Severi-Brauer surfaces , 2005 .

[19]  Mark Giesbrecht,et al.  Factoring and decomposing ore polynomials over Fq(t) , 2003, ISSAC '03.

[21]  Lajos Rónyai,et al.  Simple algebras are difficult , 1987, STOC.

[22]  Arjen K. Lenstra,et al.  The number field sieve , 1990, STOC '90.

[23]  Lajos Rónyai,et al.  Finding maximal orders in semisimple algebras over Q , 1993, computational complexity.