Self-Organized Criticality and Thermodynamic Formalism

[1]  R. Meester,et al.  Long range stochastic dynamics , 2003 .

[2]  B. Cessac,et al.  Quantum field theory renormalization group approach to self-organized critical models: The case of random boundaries , 2002 .

[3]  B. Cessac,et al.  Anomalous scaling and Lee-Yang zeros in self-organized criticality. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  A. Louisa,et al.  コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .

[5]  B. Cessac,et al.  Lyapunov exponents and transport in the Zhang model of self-organized criticality. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  R. Kenna,et al.  The Strength of First and Second Order Phase Transitions from Partition Function Zeroes , 2000, cond-mat/0012026.

[7]  Alessandro Vespignani,et al.  Anomalous scaling in the Zhang model , 2000, cond-mat/0010223.

[8]  B. Cessac,et al.  What Can One Learn About Self-Organized Criticality from Dynamical Systems Theory? , 1999, cond-mat/9912081.

[9]  Omri Sarig,et al.  Thermodynamic formalism for countable Markov shifts , 1999, Ergodic Theory and Dynamical Systems.

[10]  J. R. Dorfman,et al.  An introduction to chaos in nonequilibrium statistical mechanics , 1999 .

[11]  K. Falconer Generalized dimensions of measures on self-affine sets , 1999 .

[12]  C. Tebaldi,et al.  Multifractal Scaling in the Bak-Tang-Wiesenfeld Sandpile and Edge Events , 1999, cond-mat/9903270.

[13]  Alessandro Vespignani,et al.  Fluctuations and correlations in sandpile models , 1999, cond-mat/9903269.

[14]  Philippe Flajolet,et al.  Singularity Analysis and Asymptotics of Bernoulli Sums , 1999, Theor. Comput. Sci..

[15]  C. Maes,et al.  On the thermodynamic limit for a one-dimensional sandpile process , 1998, math/9810093.

[16]  Pierre Gaspard,et al.  Chaos, Scattering and Statistical Mechanics , 1998 .

[17]  G. Keller Equilibrium States in Ergodic Theory , 1998 .

[18]  Henrik Jeldtoft Jensen,et al.  Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems , 1998 .

[19]  Alessandro Vespignani,et al.  How self-organized criticality works: A unified mean-field picture , 1997, cond-mat/9709192.

[20]  R. Creswick,et al.  Finite-size scaling of the density of zeros of the partition function in first- and second-order phase transitions , 1997 .

[21]  B. Cessac,et al.  A dynamical system approach to SOC models of Zhang's type , 1997 .

[22]  K. Falconer Techniques in fractal geometry , 1997 .

[23]  L. Barreira A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems , 1996, Ergodic Theory and Dynamical Systems.

[24]  Lai-Sang Young,et al.  Ergodic Theory of Differentiable Dynamical Systems , 1995 .

[25]  Didier Sornette,et al.  Mapping Self-Organized Criticality onto Criticality , 1994, adap-org/9411002.

[26]  Pietronero,et al.  Renormalization scheme for self-organized criticality in sandpile models. , 1994, Physical review letters.

[27]  K. Falconer Bounded distortion and dimension for non-conformal repellers , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  Mark Pollicott,et al.  Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds , 1993 .

[29]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[30]  Dhar,et al.  Self-organized critical state of sandpile automaton models. , 1990, Physical review letters.

[31]  W. Parry,et al.  Zeta functions and the periodic orbit structure of hyperbolic dynamics , 1990 .

[32]  Zhang,et al.  Scaling theory of self-organized criticality. , 1989, Physical review letters.

[33]  Wu,et al.  Scaling and universality in avalanches. , 1989, Physical review. A, General physics.

[34]  Tang,et al.  Critical exponents and scaling relations for self-organized critical phenomena. , 1988, Physical review letters.

[35]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[36]  Privman,et al.  Complex-temperature-plane zeros: Scaling theory and multicritical mean-field models. , 1987, Physical review. B, Condensed matter.

[37]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms Part I: Characterization of measures satisfying Pesin's entropy formula , 1985 .

[38]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms Part II: Relations between entropy, exponents and dimension , 1985 .

[39]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[40]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms , 1984 .

[41]  C. Itzykson,et al.  Distribution of zeros in Ising and gauge models , 1983 .

[42]  D. Mayer,et al.  The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics , 1980 .

[43]  F. Fer,et al.  Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics : Vol. 5. by David Ruelle, Addison Wesley, Reading, MA, 1978, $ 21.50 , 1980 .

[44]  K. Mellanby How Nature works , 1978, Nature.

[45]  Eugene Seneta,et al.  Non‐Negative Matrices , 1975 .

[46]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[47]  Michael E. Fisher,et al.  The renormalization group in the theory of critical behavior , 1974 .

[48]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[49]  R. Abe Note on the Critical Behavior of Ising Ferromagnets , 1967 .

[50]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[51]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .