Orthogonal double covers of general graphs

Let H be a graph on n vertices and g a collection of n subgraphs of H, one for each vertex. Then g is an orthogonal double cover (ODC) of H if every edge of H occurs in exactly two members of g and any two members share an edge whenever the corresponding vertices are adjacent in H. ODCs of complete graphs have been widely studied in literature. In this paper we are concerned with ODCs of arbitrary graphs. In particular, we investigate the existence of ODCs whose members are isomorphic sets of independent edges.

[1]  Ronald C. Mullin,et al.  On orthogonal double covers of kn and a conjecture of chung and west , 1995 .

[2]  Gyula O. H. Katona,et al.  Extremal Combinatorial Problems in Relational Data Base , 1981, FCT.

[3]  Sven Hartmann,et al.  Suborthogonal double covers of complete graphs , 1998 .

[4]  Sven Hartmann,et al.  Asymptotic Results on Suborthogonal "B"-decompositions of Complete Digraphs , 1999, Discret. Appl. Math..

[5]  Sven Hartmann,et al.  On Orthogonal Double Covers of Graphs , 2002, Des. Codes Cryptogr..

[6]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[7]  Lisheng Wu,et al.  On minimum matrix representation of closure operations , 1989, Discret. Appl. Math..

[8]  Douglas B. West,et al.  Thep-intersection number of a complete bipartite graph and orthogonal double coverings of a clique , 1994, Comb..

[9]  J. Petersen Die Theorie der regulären graphs , 1891 .

[10]  Ronald C. Mullin,et al.  On a Problem of Hering Concerning Orthogonal Covers of Kn , 1995, J. Comb. Theory, Ser. A.

[11]  Ulrike Schumacher Suborthogonal Double Covers of the Complete Graph by Stars , 1999, Discret. Appl. Math..

[12]  Guizhen Liu,et al.  Orthogonal factorizations of graphs , 2002, J. Graph Theory.

[13]  Alexander Rosa,et al.  Symmetric graph designs on friendship graphs , 2000 .

[14]  Gillian M. Nonay,et al.  Path and Cycle Decompositions of Complete Multigraphs , 1985 .

[15]  Bernhard Ganter,et al.  Two conjectures of Demetrovics, Furedi, and Katona, concerning partitions , 1991 .

[16]  Peter J. Cameron SGDs with doubly transitive automorphism group , 1999, J. Graph Theory.

[17]  Nicholas C. Wormald,et al.  Almost All Regular Graphs Are Hamiltonian , 1994, Random Struct. Algorithms.

[18]  Uwe Leck,et al.  Orthogonal Double Covers of Complete Graphs by Trees of Small Diameter , 1999, Discret. Appl. Math..

[19]  Uwe Leck A Class of 2-Colorable Orthogonal Double Covers of Complete Graphs by Hamiltonian Paths , 2002, Graphs Comb..

[20]  Joel H. Spencer,et al.  Edge disjoint placement of graphs , 1978, J. Comb. Theory B.

[21]  Uwe Leck,et al.  On orthogonal double covers by trees , 1997 .

[22]  Martin Grüttmüller,et al.  Orthogonal double covers of Kn, n by small graphs , 2004, Discret. Appl. Math..

[23]  Zoltán Füredi,et al.  Minimum matrix representation of closure operations , 1985, Discret. Appl. Math..

[24]  Joseph Douglas Horton,et al.  Self-orthogonal Hamilton path decompositions , 1991, Discret. Math..

[25]  Peter J. Cameron SGDs with doubly transitive automorphism group , 1999 .

[26]  Bernhard Ganter,et al.  Two conjectures of Demetrovics, Füredi, and Katona, concerning partitions , 1991, Discret. Math..

[27]  Sven Hartmann,et al.  Orthogonal Decompositions of Complete Digraphs , 2002, Graphs Comb..

[28]  Alexander Rosa,et al.  Symmetric Graph Designs , 2000, Graphs Comb..

[29]  Alexander Rosa,et al.  Orthogonal Double Covers of Complete Graphs by Trees , 1997, Graphs Comb..