Distribution of the Ratio of the Largest Eigenvalue to the Trace of Complex Wishart Matrices

This correspondence investigates the statistical properties of the ratio <i>T</i> = λ<sub>1</sub>/Σ<sub>i=1</sub><sup>m</sup>λ<i>i</i> , where are λ<sub>1</sub> ≥ λ<sub>2</sub> ≥ ··· ≥ λ<sub>m</sub> the <i>m</i> eigenvalues of an <i>m</i> × <i>m</i> complex central Wishart matrix <b>W</b> with <i>n</i> degrees of freedom. We derive new exact analytical expressions for the probability density function (PDF) and cumulative distribution function (CDF) of <i>T</i> for complex central Wishart matrices with arbitrary dimensions. We also formulate simplified statistics of <i>T</i> for the special case of dual uncorrelated and dual correlated complex central Wishart matrices (<i>m</i> = 2) . The investigated ratio <i>T</i> is the most important ratio in blind spectrum sensing, since it represents a sufficient statistics for the generalized likelihood ratio test (GLRT). Thus, the derived analytical results are used to find the exact decision threshold for the desired probability of false alarm for Blind-GLRT (B-GLRT) detector. It is shown that the exact decision threshold based B-GLRT detector gives superior performance over the asymptotic decision threshold schemes proposed in the literature, which leads to efficient spectrum usage in cognitive radio.

[1]  P. Krishnaiah,et al.  On the distributions of the ratios of the extreme roots to the trace of the Wishart matrix , 1973 .

[2]  Caijun Zhong,et al.  On the Performance of Eigenvalue-Based Cooperative Spectrum Sensing for Cognitive Radio , 2011, IEEE Journal of Selected Topics in Signal Processing.

[3]  R. Fisher FREQUENCY DISTRIBUTION OF THE VALUES OF THE CORRELATION COEFFIENTS IN SAMPLES FROM AN INDEFINITELY LARGE POPU;ATION , 1915 .

[4]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[5]  N. F. Toda,et al.  Divergence in the Kalman Filter , 1967 .

[6]  Masoumeh Nasiri-Kenari,et al.  Multiple antenna spectrum sensing in cognitive radios , 2010, IEEE Transactions on Wireless Communications.

[7]  Yuriy S. Shmaliy,et al.  Time‐variant linear optimal finite impulse response estimator for discrete state‐space models , 2012 .

[8]  P. Krishnaiah,et al.  On the evaluation of some distributions that arise in simultaneous tests for the equality of the latent roots of the covariance matrix , 1974 .

[9]  Matthew R. McKay,et al.  On the exact distribution of the scaled largest eigenvalue , 2012, 2012 IEEE International Conference on Communications (ICC).

[10]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[11]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[12]  T. Ratnarajah Non-central quadratic forms on complex random matrices and applications , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[13]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[14]  Caijun Zhong,et al.  Complex random matrices and multiple-antenna spectrum sensing , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Pascal Bianchi,et al.  Performance of Statistical Tests for Single-Source Detection Using Random Matrix Theory , 2009, IEEE Transactions on Information Theory.

[16]  Yonghong Zeng,et al.  Eigenvalue-based spectrum sensing algorithms for cognitive radio , 2008, IEEE Transactions on Communications.

[17]  Abderrahmane Haddad,et al.  Estimation theory with applications to communications and control , 1972 .

[18]  Tharmalingam Ratnarajah,et al.  Eigenvalues and Condition Numbers of Complex Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[19]  Yonghong Zeng,et al.  On the Performance of Spectrum Sensing Algorithms Using Multiple Antennas , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[20]  Marco Chiani,et al.  The PDF of the lth Largest Eigenvalue of Central Wishart Matrices and its Application to the Performance Analysis of MIMO Systems , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[21]  Henry Cox,et al.  On the estimation of state variables and parameters for noisy dynamic systems , 1964 .

[22]  Josef A. Nossek,et al.  On the condition number distribution of complex wishart matrices , 2010, IEEE Transactions on Communications.

[23]  Sonia Aïssa,et al.  Closed-form expressions for the outage and ergodic Shannon capacity of MIMO MRC systems , 2005, IEEE Transactions on Communications.

[24]  R. Couillet,et al.  Random Matrix Methods for Wireless Communications: Estimation , 2011 .

[25]  Yuriy S. Shmaliy,et al.  Optimal horizons for a one-parameter family of unbiased FIR filters , 2008, Digit. Signal Process..

[26]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[27]  Caijun Zhong,et al.  Distribution of the Demmel Condition Number of Wishart Matrices , 2011, IEEE Transactions on Communications.

[28]  Yuriy S. Shmaliy,et al.  Linear Optimal FIR Estimation of Discrete Time-Invariant State-Space Models , 2010, IEEE Transactions on Signal Processing.

[29]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[30]  Caijun Zhong,et al.  Distribution of the Demmel Condition Number of Complex Wishart Matrices , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[31]  Tharmalingam Ratnarajah,et al.  Spatially correlated multiple-antenna channel capacity distributions , 2006 .

[32]  Sonia Aïssa,et al.  Joint and Marginal Eigenvalue Distributions of (Non)Central Complex Wishart Matrices and PDF-Based Approach for Characterizing the Capacity Statistics of MIMO Ricean and Rayleigh Fading Channels , 2007, IEEE Transactions on Wireless Communications.

[33]  Robert W. Heath,et al.  Switching between diversity and multiplexing in MIMO systems , 2005, IEEE Transactions on Communications.

[34]  Tharmalingam Ratnarajah,et al.  Quadratic forms on complex random matrices and multiple-antenna systems , 2005, IEEE Transactions on Information Theory.

[35]  Sonia Aïssa,et al.  Eigenvalue Distributions of Wishart-Type Random Matrices with Application to the Performance Analysis of MIMO MRC Systems , 2007, IEEE Transactions on Wireless Communications.

[36]  W. Kwon,et al.  Equivalence of finite memory filters , 1994 .

[37]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[38]  Alfred M. Bruckstein,et al.  Recursive limited memory filtering and scattering theory , 1985, IEEE Trans. Inf. Theory.

[39]  T. Ratnarajah,et al.  Complex Random Matrices and Applications ∗ , 2005 .

[40]  J. G. Gander,et al.  An introduction to signal detection and estimation , 1990 .

[41]  Boaz Nadler,et al.  On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart matrix , 2011, J. Multivar. Anal..

[42]  Yonghong Zeng,et al.  Blindly Combined Energy Detection for Spectrum Sensing in Cognitive Radio , 2008, IEEE Signal Processing Letters.