Coherence, thermodynamics and uncertainty relations

The principle of superposition is one of the main building blocks of quantum physics and has tremendous consequences both for our fundamental understanding of nature and for technological applications. In particular, the existence of coherent superposition leads to the concept of unavoidable quantum uncertainty. The role played by this “coherent” uncertainty within thermodynamics, as well as its relationship to classical lack of knowledge, is the main subject of this thesis. In Part I we study thermodynamic limitations of processing quantum coherence within a resource-theoretic framework. Using the time-translation symmetry that arises from the first law of thermodynamics, we find constraints on possible manipulations of coherence and prove their irreversibility due to the second law. We also generalise to the quantum domain Szilard’s concept of converting information into work. Namely, we show how, in the presence of a heat bath, coherence of a system can be exploited to perform mechanical work. Finally, we analyse the effect that coherence has on the structure of the thermodynamic arrow of time, i.e., on the set of states into which a given state can freely evolve under thermodynamic constraints. In Part II we focus on the interplay between quantum and classical uncertainty manifested in uncertainty relations. We show that separating the total uncertainty into these two distinct components leads to a new type of “fixed-entropy” uncertainty relation. We also analyse how classical ignorance affects the structure of states that minimise the unavoidable uncertainty arising from the noncommutativity of two observables. Finally, we study error-disturbance trade-off relations and, by proving that quantum uncertainty can be simultaneously maximised for any two observables, we clarify the unphysical nature of state-dependent relations.

[1]  M. Planck Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .

[2]  C. Carathéodory Untersuchungen über die Grundlagen der Thermodynamik , 1909 .

[3]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[4]  H. P. Robertson The Uncertainty Principle , 1929 .

[5]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[6]  G. Temple The physical principles of the quantum theory , 1932 .

[7]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[8]  A. Rényi On Measures of Entropy and Information , 1961 .

[9]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[10]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[11]  L. Susskind,et al.  Charge Superselection Rule , 1967 .

[12]  H. Groenewold A problem of information gain by quantal measurements , 1971 .

[13]  J. Kowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[14]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[15]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[16]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[17]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[18]  T. Seligman,et al.  The mixing distance , 1978 .

[19]  A. Uhlmann,et al.  A problem relating to positive linear maps on matrix algebras , 1980 .

[20]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[21]  M. Ozawa On information gain by quantum measurements of continuous observables , 1986 .

[22]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[23]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[24]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[25]  Pérès,et al.  Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Christopher A. Fuchs Information Gain vs. State Disturbance in Quantum Theory , 1996 .

[27]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[28]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[29]  Jorge Sánches-Ruiz OPTIMAL ENTROPIC UNCERTAINTY RELATION IN TWO-DIMENSIONAL HILBERT SPACE , 1998 .

[30]  R. Werner,et al.  Optimal cloning of pure states, testing single clones , 1998, quant-ph/9807010.

[31]  M. Plenio,et al.  Entanglement-Assisted Local Manipulation of Pure Quantum States , 1999, quant-ph/9905071.

[32]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[33]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[34]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[35]  D. Janzing,et al.  Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law , 2000, quant-ph/0002048.

[36]  M. Klimesh,et al.  Mathematical structure of entanglement catalysis , 2001 .

[37]  G. D’Ariano,et al.  Optimal nonuniversally covariant cloning , 2001, quant-ph/0101100.

[38]  H. Nagaoka,et al.  A new proof of the channel coding theorem via hypothesis testing in quantum information theory , 2002, Proceedings IEEE International Symposium on Information Theory,.

[39]  Ugo Vaccaro,et al.  Supermodularity and subadditivity properties of the entropy on the majorization lattice , 2002, IEEE Trans. Inf. Theory.

[40]  V. Scarani,et al.  Thermalizing quantum machines: dissipation and entanglement. , 2001, Physical review letters.

[41]  M. Ozawa Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement , 2002, quant-ph/0207121.

[42]  Cheol-hyun Cho Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus , 2003, math/0308224.

[43]  S. Luo Heisenberg uncertainty relation for mixed states , 2005 .

[44]  C. Jarzynski,et al.  Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies , 2005, Nature.

[45]  Y. Park Improvement of uncertainty relations for mixed states , 2004, math-ph/0409008.

[46]  M. Ozawa Universal uncertainty principle in the measurement operator formalism , 2005, quant-ph/0510083.

[47]  S. Luo,et al.  Quantum versus classical uncertainty , 2005 .

[48]  T. Rudolph,et al.  Degradation of a quantum reference frame , 2006, quant-ph/0602069.

[49]  J. Åberg Quantifying Superposition , 2006, quant-ph/0612146.

[50]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[51]  Patrick J. Coles,et al.  Unconditional security of quantum key distribution and the uncertainty principle , 2006 .

[52]  M. D. Gosson,et al.  Symplectic Geometry and Quantum Mechanics , 2006 .

[53]  M. Klimesh Inequalities that Collectively Completely Characterize the Catalytic Majorization Relation , 2007, 0709.3680.

[54]  Euan R. Kay,et al.  A molecular information ratchet , 2007, Nature.

[55]  S. Turgut Catalytic transformations for bipartite pure states , 2007 .

[56]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[57]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[58]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[59]  J. I. D. Vicente,et al.  Improved bounds on entropic uncertainty relations , 2007, 0709.1438.

[60]  T. Rudolph,et al.  Quantum communication using a bounded-size quantum reference frame , 2008, 0812.5040.

[61]  R. Spekkens,et al.  Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.

[62]  J. Vaccaro,et al.  The Consumption of Reference Resources , 2008, 0811.3660.

[63]  Masahito Ueda,et al.  Second Law of Thermodynamics with Discrete Quantum Feedback Control , 2009 .

[64]  R. Renner,et al.  The uncertainty principle in the presence of quantum memory , 2009, 0909.0950.

[65]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[66]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[67]  A. Winter,et al.  Entropic uncertainty relations—a survey , 2009, 0907.3704.

[68]  F. Ritort,et al.  Fluctuation theorems in small systems: extending thermodynamics to the nanoscale , 2010 .

[69]  Dynamics of a quantum reference frame undergoing selective measurements and coherent interactions , 2010, 1005.0798.

[70]  G. Guo,et al.  Experimental investigation of the entanglement-assisted entropic uncertainty principle , 2010, 1012.0361.

[71]  H. Linke,et al.  Increasing thermoelectric performance using coherent transport , 2011, 1107.0572.

[72]  R. Spekkens,et al.  The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations , 2011, 1104.0018.

[73]  R. Renner,et al.  Inadequacy of von Neumann entropy for characterizing extractable work , 2011 .

[74]  Patrick J. Coles,et al.  Information-theoretic treatment of tripartite systems and quantum channels , 2010, 1006.4859.

[75]  R. Prevedel,et al.  Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement , 2010, 1012.0332.

[76]  沙川 貴大,et al.  Thermodynamics of information processing in small systems , 2011 .

[77]  M. Partovi Majorization formulation of uncertainty in quantum mechanics , 2010, 1012.3481.

[78]  S. Lloyd,et al.  Quantum coherence in biological systems , 2011 .

[79]  J. Morton,et al.  Sustained quantum coherence and entanglement in the avian compass. , 2009, Physical review letters.

[80]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[81]  Ruchuan Liu,et al.  Bipedal nanowalker by pure physical mechanisms. , 2012, Physical review letters.

[82]  F. Nori,et al.  Quantum biology , 2012, Nature Physics.

[83]  Iman Marvian Mashhad Symmetry, Asymmetry and Quantum Information , 2012 .

[84]  Severin T. Schneebeli,et al.  Probing the conductance superposition law in single-molecule circuits with parallel paths , 2012, Nature Nanotechnology.

[85]  K. Fujikawa Universally valid Heisenberg uncertainty relation , 2012, 1205.1360.

[86]  Patrick J. Coles,et al.  Uncertainty relations from simple entropic properties. , 2011, Physical review letters.

[87]  A. Plastino,et al.  Collision entropy and optimal uncertainty , 2011, 1112.5903.

[88]  M. Ozawa,et al.  Experimental demonstration of a universally valid error–disturbance uncertainty relation in spin measurements , 2012, Nature Physics.

[89]  Aephraim M. Steinberg,et al.  A note on different definitions of momentum disturbance , 2013, 1307.3604.

[90]  Alán Aspuru-Guzik,et al.  Thermodynamics of quantum coherence , 2013, 1308.1245.

[91]  Lukasz Rudnicki,et al.  Majorization entropic uncertainty relations , 2013, ArXiv.

[92]  M. Ozawa Disproving Heisenberg's error-disturbance relation , 2013, 1308.3540.

[93]  G. Kurizki,et al.  Work and energy gain of heat-pumped quantized amplifiers , 2013, 1306.1472.

[94]  A. Ipsen Error-disturbance relations for finite dimensional systems , 2013, 1311.0259.

[95]  J. Åberg Truly work-like work extraction via a single-shot analysis , 2011, Nature Communications.

[96]  A. J. Short,et al.  Extracting work from quantum systems , 2013, 1302.2811.

[97]  Keiichi Edamatsu,et al.  Experimental violation and reformulation of the Heisenberg's error-disturbance uncertainty relation , 2013, Scientific Reports.

[98]  S. Friedland,et al.  Universal uncertainty relations. , 2013, Physical review letters.

[99]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[100]  R. Werner,et al.  Proof of Heisenberg's error-disturbance relation. , 2013, Physical review letters.

[101]  C. Branciard Error-tradeoff and error-disturbance relations for incompatible quantum measurements , 2013, Proceedings of the National Academy of Sciences.

[102]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[103]  T. Rudolph,et al.  Operational constraints on state-dependent formulations of quantum error-disturbance trade-off relations , 2013, 1311.5506.

[104]  T. Rudolph,et al.  Quantum coherence, time-translation symmetry and thermodynamics , 2014, 1410.4572.

[105]  T. Rudolph,et al.  Reexamination of pure qubit work extraction. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  K. Życzkowski,et al.  Strong majorization entropic uncertainty relations , 2014, 1402.0129.

[107]  S. Baek,et al.  Experimental test of error-disturbance uncertainty relations by weak measurement. , 2013, Physical review letters.

[108]  R. Spekkens,et al.  Extending Noether’s theorem by quantifying the asymmetry of quantum states , 2014, Nature Communications.

[109]  J. Åberg Catalytic coherence. , 2013, Physical review letters.

[110]  A. J. Short,et al.  Work extraction and thermodynamics for individual quantum systems , 2013, Nature Communications.

[111]  Patrick J. Coles,et al.  Equivalence of wave–particle duality to entropic uncertainty , 2014, Nature Communications.

[112]  R. Werner,et al.  Heisenberg uncertainty for qubit measurements , 2013, 1311.0837.

[113]  F. Nori,et al.  Certainty in Heisenberg’s Uncertainty Principle: Revisiting Definitions for Estimation Errors and Disturbance , 2013, 1308.4853.

[114]  R. Werner,et al.  Colloquium: Quantum root-mean-square error and measurement uncertainty relations , 2013, 1312.4393.

[115]  Patrick J. Coles,et al.  Improved entropic uncertainty relations and information exclusion relations , 2013, 1307.4265.

[116]  R. Spekkens,et al.  Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames , 2013, 1312.0680.

[117]  Nicole Yunger Halpern,et al.  Introducing one-shot work into fluctuation relations , 2014, 1409.3878.

[118]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[119]  J. Koski,et al.  Experimental realization of a Szilard engine with a single electron , 2014, Proceedings of the National Academy of Sciences.

[120]  C. H. Oh,et al.  Improved error-tradeoff and error-disturbance relations in terms of measurement error components , 2013, 1310.5208.

[121]  T. Rudolph,et al.  Quantum and classical entropic uncertainty relations , 2014, 1402.1143.

[122]  Andrew G. White,et al.  Experimental joint quantum measurements with minimum uncertainty. , 2013, Physical review letters.

[123]  R. Renner,et al.  Gibbs-preserving maps outperform thermal operations in the quantum regime , 2014, 1406.3618.

[124]  G. Kurizki,et al.  Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[125]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[126]  David Jennings,et al.  Description of quantum coherence in thermodynamic processes requires constraints beyond free energy , 2014, Nature Communications.

[127]  M. Wolf,et al.  Sinkhorn normal form for unitary matrices , 2014, 1408.5728.

[128]  G. Gour,et al.  Low-temperature thermodynamics with quantum coherence , 2014, Nature Communications.

[129]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[130]  M. Horodecki,et al.  Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics. , 2015, Physical review letters.

[131]  Shuan-ping Du,et al.  Conditions for coherence transformations under incoherent operations , 2015, 1503.09176.

[132]  O. Bertolami,et al.  Robertson-Schrödinger formulation of Ozawa's uncertainty principle , 2014, 1412.7948.

[133]  R. Kosloff,et al.  Quantum Equivalence and Quantum Signatures in Heat Engines , 2015, 1502.06592.

[134]  David Jennings,et al.  The extraction of work from quantum coherence , 2015, 1506.07875.

[135]  K. Życzkowski,et al.  Certainty relations, mutual entanglement, and nondisplaceable manifolds , 2015, 1506.07709.

[136]  S. Huelga,et al.  Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture. , 2014, The Journal of chemical physics.

[137]  Matteo Lostaglio,et al.  Stochastic Independence as a Resource in Small-Scale Thermodynamics. , 2014, Physical review letters.

[138]  R. Renner,et al.  A measure of majorization emerging from single-shot statistical mechanics , 2012, 1207.0434.

[139]  J. Eisert,et al.  Thermodynamic work from operational principles , 2015, 1504.05056.

[140]  J. Åberg Fully quantum fluctuation theorems , 2016, 1601.01302.

[141]  J. Anders,et al.  Coherence and measurement in quantum thermodynamics , 2015, Scientific Reports.

[142]  Markus P. Mueller,et al.  A Generalization of Majorization that Characterizes Shannon Entropy , 2015, IEEE Transactions on Information Theory.

[143]  G. Bellomo,et al.  Approximate transformations of bipartite pure-state entanglement from the majorization lattice , 2016, 1608.04818.

[144]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.