Solar‐thermal production of renewable hydrogen

[1]  Nathan P. Siegel,et al.  Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles , 2008 .

[2]  Kj Krzysztof Ptasinski,et al.  A review of the primary measures for tar elimination in biomass gasification processes , 2003 .

[3]  Steve Chalk,et al.  THE PRESIDENT'S U.S. HYDROGEN INITIATIVE , 2004 .

[4]  P. Li,et al.  Hydrogen generation by hydrolysis of zinc powder aerosol , 2008 .

[5]  A. Steinfeld,et al.  Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO , 2008 .

[6]  Pascal Anzieu,et al.  A general survey of the potential and the main issues associated with the sulfur–iodine thermochemical cycle for hydrogen production using nuclear heat , 2008 .

[7]  Jacques Lédé,et al.  SOLAR THERMOCHEMICAL CONVERSION OF BIOMASS , 1999 .

[8]  Robert Palumbo,et al.  The production of Zn from ZnO in a high- temperature solar decomposition quench process—I. The scientific framework for the process , 1998 .

[9]  Tatsuya Kodama,et al.  Thermochemical cycles for high-temperature solar hydrogen production. , 2007 .

[10]  John A. Turner,et al.  High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production , 2001 .

[11]  A. Roy,et al.  Construction Materials Development in Sulfur-Iodine Thermochemical Water-Splitting Process for Hydrogen Production , 2007 .

[12]  Alan W. Weimer,et al.  Likely near-term solar-thermal water splitting technologies , 2004 .

[13]  Y. Tamaura,et al.  SOLAR HYDROGEN PRODUCTION BY USING FERRITES , 1999 .

[14]  Robert Palumbo,et al.  Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s) , 2006 .

[15]  M. Sturzenegger,et al.  Solar hydrogen from a manganese oxide based thermochemical cycle , 1999 .

[16]  D. W. Gregg,et al.  Solar gasification of coal, activated carbon, coke and coal and biomass mixtures☆ , 1980 .

[17]  A. Steinfeld Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions , 2002 .

[18]  B. R. Steele,et al.  A solid particle central receiver for solar energy , 1986 .

[19]  A. Kogan Direct solar thermal splitting of water and on-site separation of the products — IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor , 2000 .

[20]  A. Steinfeld,et al.  H2O-splitting thermochemical cycle based on ZnO/Zn-redox: Quenching the effluents from the ZnO dissociation , 2008 .

[21]  Abraham Kogan,et al.  Direct solar thermal splitting of water and on-site separation of the products—II. Experimental feasibility study , 1998 .

[22]  Takashi Takeuchi,et al.  Feasibility of hydrogen production above 2500 K by direct thermal decomposition reaction in membrane reactor using solar energy , 2002 .

[23]  Nikola Getoff,et al.  Photoelectrochemical and photocatalytic methods of hydrogen production: A short review , 1990 .

[24]  Fluid‐wall effectiveness for preventing oxidation in solar‐thermal ZnO reactors , 2007 .

[25]  Soteris A. Kalogirou,et al.  Solar thermal collectors and applications , 2004 .

[26]  Determination of aerosol kinetics of thermal ZnO dissociation by thermogravimetry , 2007 .

[27]  A. Steinfeld Solar-processed metals as clean energy carriers and water-splitters , 1998 .

[28]  A. Weimer,et al.  Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle , 2008 .

[29]  Christopher M. Perkins Solar thermal decomposition of ZnO in aerosol flow for renewable hydrogen production , 2006 .

[30]  S. Yalçin,et al.  A review of nuclear hydrogen production , 1989 .

[31]  Nathan P. Siegel,et al.  Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines , 2008 .

[32]  S. Möller,et al.  Solar thermal decomposition kinetics of ZnO in the temperature range 1950-2400 K , 2001 .