Large-Time Behavior for Viscous and Nonviscous Hamilton-Jacobi Equations Forced by Additive Noise

We study the large-time behavior of the solutions to viscous and nonviscous Hamilton--Jacobi equations with additive noise and periodic spatial dependence. Under general structural conditions on the Hamiltonian, we show the existence of unique up to constants, global-in-time solutions, which attract any other solution.

[1]  Luciano Tubaro,et al.  Fully nonlinear stochastic partial differential equations , 1996 .

[2]  Jonathan C. Mattingly Exponential Convergence for the Stochastically Forced Navier-Stokes Equations and Other Partially Dissipative Dynamics , 2002 .

[3]  Guy Barles,et al.  Space-Time Periodic Solutions and Long-Time Behavior of Solutions to Quasi-linear Parabolic Equations , 2001, SIAM J. Math. Anal..

[4]  Panagiotis E. Souganidis,et al.  Fully nonlinear stochastic PDE with semilinear stochastic dependence , 2000 .

[5]  E Weinan,et al.  Invariant measures for Burgers equation with stochastic forcing , 2000, math/0005306.

[6]  Jean-Michel Roquejoffre,et al.  Convergence to periodic fronts in a class of semilinear parabolic equations , 1997 .

[7]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[8]  Wendell H. Fleming,et al.  Stochastic variational formula for fundamental solutions of parabolic PDE , 1985 .

[9]  P. Lions Regularizing effects for first-order hamilton-jacobi equations , 1985 .

[10]  K. Khanin,et al.  Burgers Turbulence and Random Lagrangian Systems , 2003 .

[11]  K. Elworthy ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .

[12]  J. Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .

[13]  J. Roquejoffre,et al.  Remarks on the long time behaviour of the solutions of hamilton-jacobi equations , 1999 .

[14]  Panagiotis E. Souganidis,et al.  Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations , 2000 .

[15]  Albert Fathi,et al.  Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case , 2000 .

[16]  Regularity results for first order Hamilton-Jacobi equations , 1990 .

[17]  P. Souganidis Stochastic homogenization of Hamilton–Jacobi equations and some applications , 1999 .

[18]  P. Souganidis,et al.  Maximal solutions and universal bounds for some partial differential equations of evolution , 1989 .

[19]  Jonathan C. Mattingly Ergodicity of 2D Navier–Stokes Equations with¶Random Forcing and Large Viscosity , 1999 .

[20]  A. Fathi Sur la convergence du semi-groupe de Lax-Oleinik , 1998 .

[21]  W. A. Woyczyński Burgers-KPZ Turbulence , 1998 .

[22]  Guy Barles,et al.  On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations , 2000, SIAM J. Math. Anal..

[23]  Jean-Michel Roquejoffre,et al.  Convergence to steady states or periodic solutions in a class of Hamilton–Jacobi equations , 2001 .

[24]  M. Wodzicki Lecture Notes in Math , 1984 .

[25]  Guy Barles,et al.  Some counterexamples on the asymptotic behavior of the solutions of Hamilton–Jacobi equations , 2000 .