Strengthening Erdös-Pósa property for minor-closed graph classes
暂无分享,去创建一个
[1] B. Mohar,et al. Graph Minors , 2009 .
[2] Bruce A. Reed,et al. The Erdős–Pósa Property For Long Circuits , 2007, Comb..
[3] Erik D. Demaine,et al. Linearity of grid minors in treewidth with applications through bidimensionality , 2008, Comb..
[4] J. Bólyai,et al. Unboundedness for Generalized Odd Cyclic Transversality , 2009 .
[5] James F. Geelen,et al. The Erdös-Pósa property for matroid circuits , 2009, J. Comb. Theory, Ser. B.
[6] J. Adrian Bondy,et al. OSA PROPERTY FOR LONG CIRCUITS , 2007 .
[7] L. Pósa,et al. On Independent Circuits Contained in a Graph , 1965, Canadian Journal of Mathematics.
[8] Frank Harary,et al. Graph Theory , 2016 .
[9] Carsten Thomassen,et al. On the presence of disjoint subgraphs of a specified type , 1988, J. Graph Theory.
[10] Robin Thomas,et al. Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.
[11] Bruce A. Reed,et al. The Erdős–Pósa Property for Odd Cycles in Highly Connected Graphs , 2001, Comb..
[12] Ton Kloks,et al. Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.
[13] Ken-ichi Kawarabayashi,et al. The Erdos-Pósa property for vertex- and edge-disjoint odd cycles in graphs on orientable surfaces , 2007, Discret. Math..
[14] Carsten Thomassen,et al. The Erdős–Pósa Property for Odd Cycles in Graphs of Large Connectivity , 2001, Comb..
[15] Bert Gerards,et al. Disjoint cocircuits in matroids with large rank , 2003, J. Comb. Theory, Ser. B.