Functional Informed Fiber Tracking Using Combination of Diffusion and Functional MRI

Fiber tractography using diffusion weighted MRI (DWI) is a primary tool for mapping structural connectivity in the human brain in vivo. However, this method suffers from a number of inherent limitations that have a significant impact on its capability in faithfully constructing fiber bundles for specific function. In this paper, a novel tractography algorithm combining DWI and functional MRI (fMRI) was proposed. Specifically, a spatio-temporal correlation tensor that characterizes the anisotropy of fMRI signals in white matter was introduced to complement the estimation of fiber orientation density function from DWI. The proposed method has been demonstrated to identify functional pathways implicated in fMRI task. It can effectively follow tracts in the genu of the corpus callosum that connects to the frontal lobe cortex, obtain connections between the thalamus and the anterior insula under sensory simulation, and reconstruct optic radiations in the visual circuit under visual stimulation. Taken together, the method we proposed in this work may benefit our understanding of structure-function relations in the human brain.

[1]  Albert L. Rhoton,et al.  Meyer’s Loop and the Optic Radiations in the Transsylvian Approach to the Mediobasal Temporal Lobe , 2006, Neurosurgery.

[2]  Baxter P. Rogers,et al.  Detection of synchronous brain activity in white matter tracts at rest and under functional loading , 2017, Proceedings of the National Academy of Sciences.

[3]  D. Bouhassira,et al.  Anatomical connections between brain areas activated during rectal distension in healthy volunteers: A visceral pain network , 2010, European journal of pain.

[4]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[5]  Maxime Descoteaux,et al.  Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom , 2011, NeuroImage.

[6]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[7]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[8]  A. Apkarian,et al.  Parsing pain perception between nociceptive representation and magnitude estimation. , 2009, Journal of neurophysiology.

[9]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[10]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[11]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[12]  G. Sapiro,et al.  Reconstruction of the orientation distribution function in single‐ and multiple‐shell q‐ball imaging within constant solid angle , 2010, Magnetic resonance in medicine.

[13]  Fang-Cheng Yeh,et al.  Generalized ${ q}$-Sampling Imaging , 2010, IEEE Transactions on Medical Imaging.

[14]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[15]  Jing Peng,et al.  Diffusion-Weighted Images Superresolution Using High-Order SVD , 2016, Comput. Math. Methods Medicine.

[16]  A. Anderson,et al.  Visualizing functional pathways in the human brain using correlation tensors and magnetic resonance imaging. , 2016, Magnetic resonance imaging.

[17]  Jiliu Zhou,et al.  Functional connectivity and activity of white matter in somatosensory pathways under tactile stimulations , 2017, NeuroImage.

[18]  John C. Gore,et al.  Spatio-Temporal Correlation Tensors Reveal Functional Structure in Human Brain , 2013, PloS one.

[19]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[20]  Peter Boesiger,et al.  Attention and Interhemispheric Transfer: A Behavioral and fMRI Study , 2005, Journal of Cognitive Neuroscience.

[21]  Ning Yang,et al.  Fusing DTI and fMRI data: A survey of methods and applications , 2014, NeuroImage.

[22]  Timothy Edward John Behrens,et al.  High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession , 2009, NeuroImage.

[23]  Gareth J. Barker,et al.  Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging , 2002, IEEE Transactions on Medical Imaging.

[24]  Lawrence H. Staib,et al.  White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging , 2005, Medical Image Anal..

[25]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[26]  A. W. Anderson,et al.  Sub-voxel measurement of fiber orientation using high angular resolution diffusion tensor imaging , 2002 .

[27]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[28]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[29]  Ryan C. N. D'Arcy,et al.  Optimizing the detection of white matter fMRI using asymmetric spin echo spiral , 2009, NeuroImage.

[30]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[31]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[32]  Giuseppe Scotti,et al.  A Model-Based Deconvolution Approach to Solve Fiber Crossing in Diffusion-Weighted MR Imaging , 2007, IEEE Transactions on Biomedical Engineering.

[33]  J. Voogd,et al.  The human central nervous system , 1978 .

[34]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. Gratton,et al.  Combining structural and functional neuroimaging data for studying brain connectivity: a review. , 2008, Psychophysiology.

[36]  Haiguang Wen,et al.  Mapping white-matter functional organization at rest and during naturalistic visual perception , 2017, NeuroImage.

[37]  Andrew L. Alexander,et al.  Hybrid diffusion imaging , 2007, NeuroImage.

[38]  J. Voogd,et al.  The Human Central Nervous System , 1978, Springer Berlin Heidelberg.

[39]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[40]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[41]  Guido Gerig,et al.  Analysis Tool for Diffusion Tensor MRI , 2003, MICCAI.

[42]  C. Poupon,et al.  Regularization of Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles , 2000, NeuroImage.

[43]  D. Perani,et al.  Interhemispheric transmission of visuomotor information in humans: fMRI evidence. , 2002, Journal of neurophysiology.

[44]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[45]  Alan Connelly,et al.  Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping , 2010, NeuroImage.

[46]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[47]  B. Biswal,et al.  Functional connectivity of default mode network components: Correlation, anticorrelation, and causality , 2009, Human brain mapping.

[48]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[49]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[50]  Daniel C. Alexander,et al.  Maximum Entropy Spherical Deconvolution for Diffusion MRI , 2005, IPMI.

[51]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .