A combinatory account of internal structure

Traditional combinatory logic uses combinators S and K to represent all Turing-computable functions on natural numbers, but there are Turing-computable functions on the combinators themselves that cannot be so represented, because they access internal structure in ways that S and K cannot. Much of this expressive power is captured by adding a factorisation combinator F. The resulting SF-calculus is structure complete, in that it supports all pattern-matching functions whose patterns are in normal form, including a function that decides structural equality of arbitrary normal forms. A general characterisation of the structure complete, confluent combinatory calculi is given along with some examples. These are able to represent all their Turing-computable functions whose domain is limited to normal forms. The combinator F can be typed using an existential type to represent internal type information.

[1]  J. Roger Hindley,et al.  Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.

[2]  Rod M. Burstall,et al.  Proving Properties of Programs by Structural Induction , 1969, Comput. J..

[3]  M. Schönfinkel Über die Bausteine der mathematischen Logik , 1924 .

[4]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[5]  Alan M. Turing,et al.  Computability and λ-definability , 1937, Journal of Symbolic Logic.

[6]  Carl A. Gunter,et al.  Semantic Domains , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[7]  John T. Kearns The completeness of combinatory logic with discriminators , 1973, Notre Dame J. Formal Log..

[8]  C. Barry Jay,et al.  The pattern calculus , 2004, TOPL.

[9]  A. R. Turquette,et al.  Logic, Semantics, Metamathematics , 1957 .

[10]  P. Dangerfield Logic , 1996, Aristotle and the Stoics.

[11]  John T. Kearns Combinatory Logic with Discriminators , 1969, J. Symb. Log..

[12]  John McCarthy,et al.  Recursive functions of symbolic expressions and their computation by machine, Part I , 1960, Commun. ACM.

[13]  Eric G. Wagner Uniformly reflexive structures: On the nature of gödelizations and relative computability , 1969 .

[14]  J. Girard,et al.  Proofs and types , 1989 .

[15]  Gerard Huet,et al.  Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[16]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[17]  Delia Kesner,et al.  Pure Pattern Calculus , 2006, ESOP.

[18]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[19]  HuetGérard Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980 .

[20]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[21]  Gérard P. Huet,et al.  Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.

[22]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[23]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[24]  Delia Kesner,et al.  First-class patterns , 2009, Journal of Functional Programming.