True precision limits in quantum metrology

We show that quantification of the performance of quantum-enhanced measurement schemes based on the concept of quantum Fisher information (QFI) yields results that are asymptotically equivalent to those from the rigorous Bayesian approach, provided generic uncorrelated noise is present in the setup. At the same time, we show that for the problem of decoherence-free phase estimation this equivalence breaks down, and the achievable estimation uncertainty calculated within the Bayesian approach is larger by a factor of π than that predicted from the QFI even in the large prior knowledge (small parameter fluctuation) regime, where the QFI is conventionally regarded as a reliable figure of merit. We conjecture that an analogous discrepancy is present in the arbitrary decoherence-free unitary parameter estimation scheme, and propose a general formula for the asymptotically achievable precision limit. We also discuss protocols utilizing states with an indefinite number of particles, and show that within the Bayesian approach it is legitimate to replace the number of particles with the mean number of particles in the formulas for the asymptotic precision, which as a consequence provides another argument for proposals based on the properties of the QFI of indefinite particle number states leading to sub-Heisenberg precisions not being practically feasible.

[1]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[2]  R. Gill,et al.  On asymptotic quantum statistical inference , 2011, 1112.2078.

[3]  Seth Lloyd,et al.  Quantum measurement bounds beyond the uncertainty relations. , 2011, Physical review letters.

[4]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[5]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[6]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[7]  Vittorio Giovannetti,et al.  Sub-Heisenberg estimation strategies are ineffective. , 2012, Physical review letters.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  A. Jenčová,et al.  Local Asymptotic Normality in Quantum Statistics , 2006, quant-ph/0606213.

[10]  Augusto Smerzi,et al.  Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.

[11]  'Angel Rivas,et al.  Sub-Heisenberg estimation of non-random phase shifts , 2011, 1105.6310.

[12]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[13]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[14]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[15]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[16]  Martin Fraas,et al.  Bayesian quantum frequency estimation in presence of collective dephasing , 2013, 1311.5576.

[17]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[18]  Konrad Banaszek,et al.  Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.

[19]  J. Kahn,et al.  Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.

[20]  A Acín,et al.  Noisy metrology beyond the standard quantum limit. , 2012, Physical review letters.

[21]  W. M. Liu,et al.  Unbounded quantum Fisher information in two-path interferometry with finite photon number , 2011, 1105.2990.

[22]  M. Paris,et al.  Squeezed vacuum as a universal quantum probe , 2008, 0802.1682.

[23]  Mankei Tsang,et al.  Ziv-Zakai error bounds for quantum parameter estimation. , 2011, Physical review letters.

[24]  Edward H. Chen,et al.  True Limits to Precision via Unique Quantum Probe , 2014 .

[25]  H. M. Wiseman,et al.  How to perform the most accurate possible phase measurements , 2009, 0907.0014.

[26]  Vadim N. Smelyanskiy,et al.  Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.

[27]  Pieter Kok,et al.  Erratum: General Optimality of the Heisenberg Limit for Quantum Metrology [Phys. Rev. Lett. 105, 180402 (2010)] , 2011 .

[28]  W. Dur,et al.  Optimal quantum states for frequency estimation , 2014, 1402.6946.

[29]  Aravind Chiruvelli,et al.  Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.

[30]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[31]  E. Milotti,et al.  Quantum explorations: from the waltz of the Pauli exclusion principle to the rock of the spontaneous collapse , 2015 .

[32]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[33]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[34]  Marcin Jarzyna,et al.  Quantum interferometry with and without an external phase reference , 2012 .

[35]  Pieter Kok,et al.  General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.

[36]  C. Helstrom Quantum detection and estimation theory , 1969 .

[37]  S. Massar,et al.  Optimal quantum clocks , 1998, quant-ph/9808042.

[38]  Marcin Jarzyna,et al.  Matrix product states for quantum metrology. , 2013, Physical review letters.

[39]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[40]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[41]  Michael J. W. Hall,et al.  Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information , 2012, 1201.4542.

[42]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[43]  Hiroshi Imai,et al.  A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .

[44]  G. D’Ariano,et al.  Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.

[45]  O. Barndorff-Nielsen,et al.  Fisher information in quantum statistics , 1998, quant-ph/9808009.

[46]  Jan Kolodynski,et al.  Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.

[47]  Rafal Demkowicz-Dobrzanski,et al.  Optimal phase estimation with arbitrary a priori knowledge , 2011, 1102.0786.