True precision limits in quantum metrology
暂无分享,去创建一个
[1] J. Cirac,et al. Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.
[2] R. Gill,et al. On asymptotic quantum statistical inference , 2011, 1112.2078.
[3] Seth Lloyd,et al. Quantum measurement bounds beyond the uncertainty relations. , 2011, Physical review letters.
[4] K. Banaszek,et al. Quantum phase estimation with lossy interferometers , 2009, 0904.0456.
[5] Jan Kolodynski,et al. Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.
[6] R. Gill,et al. Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .
[7] Vittorio Giovannetti,et al. Sub-Heisenberg estimation strategies are ineffective. , 2012, Physical review letters.
[8] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[9] A. Jenčová,et al. Local Asymptotic Normality in Quantum Statistics , 2006, quant-ph/0606213.
[10] Augusto Smerzi,et al. Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.
[11] 'Angel Rivas,et al. Sub-Heisenberg estimation of non-random phase shifts , 2011, 1105.6310.
[12] Jonathan P. Dowling,et al. A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.
[13] T. Rudolph,et al. Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.
[14] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[15] Wiseman,et al. Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.
[16] Martin Fraas,et al. Bayesian quantum frequency estimation in presence of collective dephasing , 2013, 1311.5576.
[17] Rafał Demkowicz-Dobrzański,et al. The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.
[18] Konrad Banaszek,et al. Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.
[19] J. Kahn,et al. Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.
[20] A Acín,et al. Noisy metrology beyond the standard quantum limit. , 2012, Physical review letters.
[21] W. M. Liu,et al. Unbounded quantum Fisher information in two-path interferometry with finite photon number , 2011, 1105.2990.
[22] M. Paris,et al. Squeezed vacuum as a universal quantum probe , 2008, 0802.1682.
[23] Mankei Tsang,et al. Ziv-Zakai error bounds for quantum parameter estimation. , 2011, Physical review letters.
[24] Edward H. Chen,et al. True Limits to Precision via Unique Quantum Probe , 2014 .
[25] H. M. Wiseman,et al. How to perform the most accurate possible phase measurements , 2009, 0907.0014.
[26] Vadim N. Smelyanskiy,et al. Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.
[27] Pieter Kok,et al. Erratum: General Optimality of the Heisenberg Limit for Quantum Metrology [Phys. Rev. Lett. 105, 180402 (2010)] , 2011 .
[28] W. Dur,et al. Optimal quantum states for frequency estimation , 2014, 1402.6946.
[29] Aravind Chiruvelli,et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.
[30] Alex W Chin,et al. Quantum metrology in non-Markovian environments. , 2011, Physical review letters.
[31] E. Milotti,et al. Quantum explorations: from the waltz of the Pauli exclusion principle to the rock of the spontaneous collapse , 2015 .
[32] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[33] Derek K. Jones,et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.
[34] Marcin Jarzyna,et al. Quantum interferometry with and without an external phase reference , 2012 .
[35] Pieter Kok,et al. General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.
[36] C. Helstrom. Quantum detection and estimation theory , 1969 .
[37] S. Massar,et al. Optimal quantum clocks , 1998, quant-ph/9808042.
[38] Marcin Jarzyna,et al. Matrix product states for quantum metrology. , 2013, Physical review letters.
[39] Wineland,et al. Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[40] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[41] Michael J. W. Hall,et al. Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information , 2012, 1201.4542.
[42] A. V. D. Vaart,et al. Asymptotic Statistics: Frontmatter , 1998 .
[43] Hiroshi Imai,et al. A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .
[44] G. D’Ariano,et al. Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.
[45] O. Barndorff-Nielsen,et al. Fisher information in quantum statistics , 1998, quant-ph/9808009.
[46] Jan Kolodynski,et al. Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.
[47] Rafal Demkowicz-Dobrzanski,et al. Optimal phase estimation with arbitrary a priori knowledge , 2011, 1102.0786.