Sorting in linear time?

We show that a unit-cost RAM with a word length of bits can sort integers in the range in time, for arbitrary ! , a significant improvement over the bound of " # $ achieved by the fusion trees of Fredman and Willard. Provided that % & ' ( *),+., for some fixed /102 , the sorting can even be accomplished in linear expected time with a randomized algorithm. Both of our algorithms parallelize without loss on a unitcost PRAM with a word length of bits. The first one yields an algorithm that uses 3 4 5 $ time and 6 ( operations on a deterministic CRCW PRAM. The second one yields an algorithm that uses ' 5 7 expected time and " expected operations on a randomized EREW PRAM, provided that 8 ' 5 7 *),+.for some fixed /90: . Our deterministic and randomized sequential and parallel algorithms generalize to the lexicographic sorting problem of sorting multiple-precision integers represented in several words.

[1]  L. H.,et al.  Communication Networks , 1936, Nature.

[2]  Susanne Albers,et al.  Improved parallel integer sorting without concurrent writing , 1992, SODA '92.

[3]  Yijie Han,et al.  : Parallel Algorithms for Bucket Sorting and the Data Dependent Prefix Problem , 1986, ICPP.

[4]  Torben Hagerup,et al.  Optimal Merging and Sorting on the Erew Pram , 1989, Inf. Process. Lett..

[5]  Torben Hagerup Optimal parallel string algorithms: sorting, merging and computing the minimum , 1994, STOC '94.

[6]  A. Andersson,et al.  A New Eecient Radix Sort , 1994 .

[7]  Torben Hagerup,et al.  Fast and reliable parallel hashing , 1991, SPAA '91.

[8]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[9]  Ronald L. Rivest,et al.  Expected time bounds for selection , 1975, Commun. ACM.

[10]  Hong Shen,et al.  Improved Nonconservative Sequential and Parallel Integer Sorting , 1990, Inf. Process. Lett..

[11]  Torben Hagerup,et al.  A Guided Tour of Chernoff Bounds , 1990, Inf. Process. Lett..

[12]  장훈,et al.  [서평]「Computer Organization and Design, The Hardware/Software Interface」 , 1997 .

[13]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[14]  Clyde P. Kruskal,et al.  Searching, Merging, and Sorting in Parallel Computation , 1983, IEEE Transactions on Computers.

[15]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[16]  Johan Håstad,et al.  Optimal bounds for decision problems on the CRCW PRAM , 1987, STOC.

[17]  Krzysztof Diks,et al.  Improved Deterministic Parallel Integer Sorting , 1991, Inf. Comput..

[18]  David A. Patterson,et al.  Computer Organization & Design: The Hardware/Software Interface , 1993 .

[19]  David G. Kirkpatrick,et al.  Upper Bounds for Sorting Integers on Random Access Machines , 1984, Theor. Comput. Sci..

[20]  Arne Andersson,et al.  A new efficient radix sort , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[21]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[22]  Alexandru Nicolau,et al.  Adaptive Bitonic Sorting: An Optimal Parallel Algorithm for Shared-Memory Machines , 1989, SIAM J. Comput..

[23]  Donald J. Patterson,et al.  Computer organization and design: the hardware-software interface (appendix a , 1993 .

[24]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[25]  Richard Cole,et al.  Approximate Parallel Scheduling. Part I: The Basic Technique with Applications to Optimal Parallel List Ranking in Logarithmic Time , 1988, SIAM J. Comput..

[26]  Martti Penttonen,et al.  A Reliable Randomized Algorithm for the Closest-Pair Problem , 1997, J. Algorithms.

[27]  Richard Cole,et al.  Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking , 2018, Inf. Control..

[28]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Amir M. Ben-Amram When Can We Sort in o(n log n) Time? , 1997, J. Comput. Syst. Sci..

[31]  Zvi Galil,et al.  What can we sort in o(nlog n) time? , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[32]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[33]  Robert E. Tarjan,et al.  Scaling and related techniques for geometry problems , 1984, STOC '84.

[34]  Richard Cole,et al.  Parallel merge sort , 1988, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[35]  Robert E. Tarjan,et al.  An Efficient Parallel Biconnectivity Algorithm , 2011, SIAM J. Comput..

[36]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[37]  Michael L. Fredman,et al.  Surpassing the Information Theoretic Bound with Fusion Trees , 1993, J. Comput. Syst. Sci..