Implantable Cardioverter‐Defibrillator Shocks Increase T‐Wave Alternans

Introduction: While implantable defibrillator shocks save lives, shock can lead to ventricular arrhythmias. However, the mechanism of shock‐related proarrhythmia remains unclear. We evaluated the impact of ICD shock on repolarization instability, a factor associated with ventricular arrhythmogenesis.

[1]  Hsiang-Jer Tseng,et al.  Detection of T-wave alternans using an implantable cardioverter-defibrillator. , 2006, Heart rhythm.

[2]  V. Shusterman,et al.  Upsurge in T-Wave Alternans and Nonalternating Repolarization Instability Precedes Spontaneous Initiation of Ventricular Tachyarrhythmias in Humans , 2006, Circulation.

[3]  Peter N. Jordan,et al.  Action potential morphology influences intracellular calcium handling stability and the occurrence of alternans. , 2006, Biophysical journal.

[4]  K. P. Anderson,et al.  Sudden Cardiac Death Unresponsive to Implantable Defibrillator Therapy: An Urgent Target for Clinicians, Industry and Government , 2005, Journal of Interventional Cardiac Electrophysiology.

[5]  S. Hohnloser,et al.  Quantitative Assessment of Microvolt T‐Wave Alternans in Patients with Congestive Heart Failure , 2005, Journal of cardiovascular electrophysiology.

[6]  Vladimir Shusterman,et al.  Effects of Psychologic Stress on Repolarization and Relationship to Autonomic and Hemodynamic Factors , 2005, Journal of cardiovascular electrophysiology.

[7]  Peter N. Jordan,et al.  Adaptive Diastolic Interval Control of Cardiac Action Potential Duration Alternans , 2004, Journal of cardiovascular electrophysiology.

[8]  G. Boriani,et al.  Increase in QT/QTc dispersion after low energy cardioversion of chronic persistent atrial fibrillation. , 2004, International journal of cardiology.

[9]  I. Efimov,et al.  Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks. , 2004, American journal of physiology. Heart and circulatory physiology.

[10]  J. Bigger,et al.  Ambulatory Electrocardiogram‐Based Tracking of T Wave Alternans in Postmyocardial Infarction Patients to Assess Risk of Cardiac Arrest or Arrhythmic Death , 2003, Journal of cardiovascular electrophysiology.

[11]  V. Shusterman,et al.  Calcium-dependent arrhythmias in transgenic mice with heart failure. , 2003, American journal of physiology. Heart and circulatory physiology.

[12]  R. Peters,et al.  Influence of QRS Duration on the Prognostic Value of T Wave Alternans , 2002, Journal of cardiovascular electrophysiology.

[13]  Antonis A Armoundas,et al.  Pathophysiological basis and clinical application of T-wave alternans. , 2002, Journal of the American College of Cardiology.

[14]  L. Mitchell,et al.  Sudden death in patients with implantable cardioverter defibrillators: the importance of post-shock electromechanical dissociation. , 2002, Journal of the American College of Cardiology.

[15]  R. Peters,et al.  Effects of Selective Autonomic Blockade on T-Wave Alternans in Humans , 2002, Circulation.

[16]  R. Verrier,et al.  Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. , 2002, Journal of applied physiology.

[17]  M R Gold,et al.  A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. , 2000, Journal of the American College of Cardiology.

[18]  M. Malik,et al.  Measurement, interpretation and clinical potential of QT dispersion. , 2000, Journal of the American College of Cardiology.

[19]  M. Hennersdorf,et al.  T Wave Alternans as a Risk Predictor in Patients with Cardiomyopathy and Mild‐to‐Moderate Heart Failure , 2000, Pacing and clinical electrophysiology : PACE.

[20]  A. Bernstein,et al.  Patients' Attitudes Toward Implanted Defibrillator Shocks , 2000, Pacing and clinical electrophysiology : PACE.

[21]  I. Sakuma,et al.  Regional Differences in Arrhythmogenic Aftereffects of High Intensity DC Stimulation in the Ventricles , 2000, Pacing and clinical electrophysiology : PACE.

[22]  M. Franz,et al.  High dispersion of ventricular repolarization after an implantable defibrillator shock predicts induction of ventricular fibrillation as well as unsuccessful defibrillation. , 2000, Journal of the American College of Cardiology.

[23]  B. Waldecker,et al.  Detection of myocardial injury during transvenous implantation of automatic cardioverter-defibrillators. , 1999, Journal of the American College of Cardiology.

[24]  D. Rosenbaum,et al.  Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. , 1999, Circulation.

[25]  W. Parmley,et al.  Ventricular fibrillation-induced intracellular Ca2+ overload causes failed electrical defibrillation and post-shock reinitiation of fibrillation. , 1998, Journal of molecular and cellular cardiology.

[26]  Douglas L. Jones,et al.  Defibrillation depresses heart sarcoplasmic reticulum calcium pump: a mechanism of postshock dysfunction. , 1998, American journal of physiology. Heart and circulatory physiology.

[27]  R J Cohen,et al.  T Wave Alternans During Exercise and Atrial Pacing in Humans , 1997, Journal of cardiovascular electrophysiology.

[28]  R. Sung,et al.  Ventricular pacing threshold and refractoriness after defibrillation shocks in patients with implantable cardioverter-defibrillators. , 1996, American heart journal.

[29]  M. Rosenqvist,et al.  Cardiac outflow of endothelin, neuropeptide Y and noradrenaline in relation to hyperaemia in coronary sinus flow following electrical conversion of induced ventricular fibrillation in man. , 1995, European heart journal.

[30]  J. Ruskin,et al.  Electrical alternans and vulnerability to ventricular arrhythmias. , 1994, The New England journal of medicine.

[31]  G. Klein,et al.  Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia. , 1993, Journal of the American College of Cardiology.

[32]  A. Adgey,et al.  Oxidative metabolism and myocardial blood flow changes after transthoracic DC countershocks in dogs. , 1992, European heart journal.

[33]  R. Verrier,et al.  Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. , 1991, Science.

[34]  M. Josephson,et al.  ELECTROCARDIOGRAPHY Electrocardiographic changes after cardioversion of ventricular arrhythmias , 2005 .

[35]  B B Lerman,et al.  Myocardial injury and induction of arrhythmia by direct current shock delivered via endocardial catheters in dogs. , 1984, Circulation.