Resource In Situ Capture of Chromatin Interactions by Biotinylated dCas 9 Graphical

[1]  M. Hetzer,et al.  Nucleoporin-mediated regulation of cell identity genes , 2016, Genes & development.

[2]  Pedro Olivares-Chauvet,et al.  UMI-4C for quantitative and targeted chromosomal contact profiling , 2016, Nature Methods.

[3]  L. Zon,et al.  Dynamic Control of Enhancer Repertoires Drives Lineage and Stage-Specific Transcription during Hematopoiesis. , 2016, Developmental cell.

[4]  R. Hardison,et al.  Functions of BET proteins in erythroid gene expression. , 2015, Blood.

[5]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[6]  William Stafford Noble,et al.  Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes , 2014, Nature Methods.

[7]  Philip D. Gregory,et al.  Reactivation of Developmentally Silenced Globin Genes by Forced Chromatin Looping , 2014, Cell.

[8]  Sean D. Taverna,et al.  A CRISPR-based approach for proteomic analysis of a single genomic locus , 2014, Epigenetics.

[9]  M. Gobbi,et al.  Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment , 2014, Nature Genetics.

[10]  Luke A. Gilbert,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2013, Cell.

[11]  R. Ohki,et al.  Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) , 2013, Scientific Reports.

[12]  Job Dekker,et al.  Organization of the Mitotic Chromosome , 2013, Science.

[13]  Toshitsugu Fujita,et al.  Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. , 2013, Biochemical and biophysical research communications.

[14]  S. Ficarro,et al.  Genome-scale Proteome Quantification by DEEP SEQ Mass Spectrometry , 2013, Nature Communications.

[15]  S. Orkin,et al.  Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A , 2013, Proceedings of the National Academy of Sciences.

[16]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[17]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[18]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[19]  Amos Tanay,et al.  Robust 4C-seq data analysis to screen for regulatory DNA interactions , 2012, Nature Methods.

[20]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[21]  P. Gregory,et al.  Controlling Long-Range Genomic Interactions at a Native Locus by Targeted Tethering of a Looping Factor , 2012, Cell.

[22]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[23]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[24]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[25]  Karen A. Lewis,et al.  Telomerase and telomere-associated proteins: structural insights into mechanism and evolution. , 2012, Structure.

[26]  Cong Peng,et al.  Correction of Sickle Cell Disease in Adult Mice by Interference with Fetal Hemoglobin Silencing , 2011, Science.

[27]  Chris Fisher,et al.  A functional element necessary for fetal hemoglobin silencing. , 2011, The New England journal of medicine.

[28]  William B. Smith,et al.  Selective inhibition of BET bromodomains , 2010, Nature.

[29]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[30]  G. Blobel,et al.  Role of the GATA-1/FOG-1/NuRD Pathway in the Expression of Human β-Like Globin Genes , 2010, Molecular and Cellular Biology.

[31]  G. Bejerano,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[32]  Ulrich Wagner,et al.  Chromatin-Bound Nuclear Pore Components Regulate Gene Expression in Higher Eukaryotes , 2010, Cell.

[33]  M. Fornerod,et al.  Nucleoporins Directly Stimulate Expression of Developmental and Cell-Cycle Genes Inside the Nucleoplasm , 2010, Cell.

[34]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[35]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[36]  Jonghwan Kim,et al.  Use of in vivo biotinylation to study protein–protein and protein–DNA interactions in mouse embryonic stem cells , 2009, Nature Protocols.

[37]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[38]  Shin-Il Kim,et al.  BRG1 requirement for long-range interaction of a locus control region with a downstream promoter , 2009, Proceedings of the National Academy of Sciences.

[39]  Robert E. Kingston,et al.  Purification of Proteins Associated with Specific Genomic Loci , 2009, Cell.

[40]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[41]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[42]  Tony O’Hagan Bayes factors , 2006 .

[43]  B. Steensel,et al.  Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C) , 2006, Nature Genetics.

[44]  K. Sandhu,et al.  Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions , 2006, Nature Genetics.

[45]  C. Nusbaum,et al.  Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. , 2006, Genome research.

[46]  Rudolf Jaenisch,et al.  Efficient method to generate single‐copy transgenic mice by site‐specific integration in embryonic stem cells , 2006, Genesis.

[47]  Cameron S. Osborne,et al.  Active genes dynamically colocalize to shared sites of ongoing transcription , 2004, Nature Genetics.

[48]  Erik Splinter,et al.  Looping and interaction between hypersensitive sites in the active beta-globin locus. , 2002, Molecular cell.

[49]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[50]  P. Navas,et al.  LCR-dependent gene expression in beta-globin YAC transgenics: detailed structural studies validate functional analysis even in the presence of fragmented YACs. , 1998, Human molecular genetics.

[51]  P. Navas,et al.  Developmental Specificity of the Interaction between the Locus Control Region and Embryonic or Fetal Globin Genes in Transgenic Mice with an HS3 Core Deletion , 1998, Molecular and Cellular Biology.

[52]  W Miller,et al.  Locus control regions of mammalian beta-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights. , 1997, Gene.

[53]  P. Schatz Use of Peptide Libraries to Map the Substrate Specificity of a Peptide-Modifying Enzyme: A 13 Residue Consensus Peptide Specifies Biotinylation in Escherichia coli , 1993, Bio/Technology.

[54]  J. Sharpe,et al.  A single beta-globin locus control region element (5' hypersensitive site 2) is sufficient for developmental regulation of human globin genes in transgenic mice , 1992, Molecular and cellular biology.

[55]  S. Orkin,et al.  MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2012 .

[56]  Martin Renqiang Min,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[57]  I. Amit,et al.  Comprehensive mapping of long-range interactions reveals folding principles of the human genome. , 2009, Science.

[58]  F. Grosveld,et al.  The beta-globin nuclear compartment in development and erythroid differentiation. , 2003, Nature genetics.

[59]  F. Grosveld,et al.  Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes. , 1993, Genes & development.

[60]  G. Stamatoyannopoulos,et al.  Developmental regulation of human globin genes in transgenic mice. , 1985, Cold Spring Harbor symposia on quantitative biology.