A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS.

[1]  Kevin Kim,et al.  A TALEN genome-editing system for generating human stem cell-based disease models. , 2013, Cell stem cell.

[2]  Alexander Böcker,et al.  Discovery of inhibitors of microglial neurotoxicity acting through multiple mechanisms using a stem-cell-based phenotypic assay. , 2012, Cell stem cell.

[3]  B. Pettmann,et al.  Olesoxime delays muscle denervation, astrogliosis, microglial activation and motoneuron death in an ALS mouse model , 2012, Neuropharmacology.

[4]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[5]  V. Gribkoff,et al.  The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis , 2011, Nature Medicine.

[6]  Theonie Anastassiadis,et al.  Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity , 2011, Nature Biotechnology.

[7]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[8]  L. Barbeito,et al.  Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis , 2011, Proceedings of the National Academy of Sciences.

[9]  Kevin Eggan,et al.  Conversion of mouse and human fibroblasts into functional spinal motor neurons. , 2011, Cell stem cell.

[10]  J. Steen,et al.  A screen for regulators of survival of motor neuron protein levels. , 2011, Nature chemical biology.

[11]  J. Mendell,et al.  Astrocytes from Familial and Sporadic ALS Patients are Toxic to Motor Neurons , 2011, Nature Biotechnology.

[12]  A. Acevedo-Arozena,et al.  SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments , 2011, Mammalian Genome.

[13]  S. Koh,et al.  Brief Review of the Role of Glycogen Synthase Kinase-3β in Amyotrophic Lateral Sclerosis , 2011, Neurology research international.

[14]  Hynek Wichterle,et al.  A functionally characterized test set of human induced pluripotent stem cells , 2011, Nature Biotechnology.

[15]  Andreas Wree,et al.  Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells , 2011, Neuroscience Letters.

[16]  H. Durham,et al.  Calpastatin reduces toxicity of SOD1G93A in a culture model of amyotrophic lateral sclerosis , 2010, Neuroreport.

[17]  Eun-Mi Hur,et al.  GSK3 signalling in neural development , 2010, Nature Reviews Neuroscience.

[18]  R. Roos,et al.  Mutant SOD1 knockdown in all cell types ameliorates disease in G85R SOD1 mice with a limited additional effect over knockdown restricted to motor neurons , 2010, Journal of neurochemistry.

[19]  J. Grosskreutz,et al.  Calcium dysregulation in amyotrophic lateral sclerosis. , 2010, Cell calcium.

[20]  D. Cleveland,et al.  Non–cell autonomous toxicity in neurodegenerative disorders: ALS and beyond , 2009, The Journal of cell biology.

[21]  O. Hardiman,et al.  Control of Motoneuron Survival by Angiogenin , 2008, The Journal of Neuroscience.

[22]  F. Gage,et al.  Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. , 2008, Cell stem cell.

[23]  K. Eggan,et al.  Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. , 2008, Cell stem cell.

[24]  V. Gribkoff,et al.  KNS‐760704 [(6R)‐4,5,6,7‐tetrahydro‐N6‐propyl‐2, 6‐benzothiazole‐diamine dihydrochloride monohydrate] for the Treatment of Amyotrophic Lateral Sclerosis , 2008, CNS neuroscience & therapeutics.

[25]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[26]  L. Rubin Stem Cells and Drug Discovery: The Beginning of a New Era? , 2008, Cell.

[27]  P. Cohen,et al.  The selectivity of protein kinase inhibitors: a further update. , 2007, The Biochemical journal.

[28]  W. Robberecht,et al.  Vascular endothelial growth factor counteracts the loss of phospho‐Akt preceding motor neurone degeneration in amyotrophic lateral sclerosis , 2007, Neuropathology and applied neurobiology.

[29]  C. Henderson,et al.  Identification and Characterization of Cholest-4-en-3-one, Oxime (TRO19622), a Novel Drug Candidate for Amyotrophic Lateral Sclerosis , 2007, Journal of Pharmacology and Experimental Therapeutics.

[30]  B. Doble,et al.  Functional redundancy of GSK-3α and GSK-3β in wnt/β-catenin signaling shown by using an allelic series of embryonic stem cell lines , 2007 .

[31]  Youngchul Kim,et al.  Inhibition of glycogen synthase kinase-3 suppresses the onset of symptoms and disease progression of G93A-SOD1 mouse model of ALS , 2007, Experimental Neurology.

[32]  Hynek Wichterle,et al.  Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons , 2007, Nature Neuroscience.

[33]  Kevin Eggan,et al.  Non–cell autonomous effect of glia on motor neurons in an embryonic stem cell–based ALS model , 2007, Nature Neuroscience.

[34]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[35]  J. Crow,et al.  The CB2 cannabinoid agonist AM‐1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset , 2006, Journal of neurochemistry.

[36]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[37]  D. Cleveland,et al.  ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors , 2006, Neuron.

[38]  A. Makriyannis,et al.  AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. , 2006, European journal of pharmacology.

[39]  B. Monia,et al.  Antisense oligonucleotide therapy for neurodegenerative disease. , 2006, The Journal of clinical investigation.

[40]  S. Lorenzl,et al.  The matrix metalloproteinases inhibitor Ro 26-2853 extends survival in transgenic ALS mice , 2006, Experimental Neurology.

[41]  H. Wootz,et al.  XIAP decreases caspase-12 cleavage and calpain activity in spinal cord of ALS transgenic mice. , 2006, Experimental cell research.

[42]  R. Sandyk SEROTONERGIC MECHANISMS IN AMYOTROPHIC LATERAL SCLEROSIS , 2006, The International journal of neuroscience.

[43]  K. Taira,et al.  Transgenic Small Interfering RNA Halts Amyotrophic Lateral Sclerosis in a Mouse Model* , 2005, Journal of Biological Chemistry.

[44]  B. Pettmann,et al.  Foxo3a induces motoneuron death through the Fas pathway in cooperation with JNK , 2004, BMC Neuroscience.

[45]  S. Kim,et al.  Epigallocatechin gallate prevents oxidative-stress-induced death of mutant Cu/Zn-superoxide dismutase (G93A) motoneuron cells by alteration of cell survival and death signals. , 2004, Toxicology.

[46]  Hynek Wichterle,et al.  Functional Properties of Motoneurons Derived from Mouse Embryonic Stem Cells , 2004, The Journal of Neuroscience.

[47]  H. Wichterle,et al.  Directed Differentiation of Embryonic Stem Cells into Motor Neurons , 2002, Cell.

[48]  S. R. Datta,et al.  Transcription-dependent and -independent control of neuronal survival by the PI3K–Akt signaling pathway , 2001, Current Opinion in Neurobiology.

[49]  L. Martin,et al.  Neuronal cell death in nervous system development, disease, and injury (Review). , 2001, International journal of molecular medicine.

[50]  T. Tan,et al.  A Novel Human STE20-related Protein Kinase, HGK, That Specifically Activates the c-Jun N-terminal Kinase Signaling Pathway* , 1999, The Journal of Biological Chemistry.

[51]  L. Rubin,et al.  Phosphorylation of c-Jun Is Necessary for Apoptosis Induced by Survival Signal Withdrawal in Cerebellar Granule Neurons , 1998, The Journal of Neuroscience.

[52]  Robert H. Brown,et al.  Amyotrophic lateral sclerosis. Insights from genetics. , 1997, Archives of neurology.

[53]  L. Rubin,et al.  A c-jun dominant negative mutant protects sympathetic neurons against programmed cell death , 1995, Neuron.

[54]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[55]  I. Niebroj-Dobosz,et al.  Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. , 2010, European journal of neurology.

[56]  B. Doble,et al.  Functional redundancy of GSK-3alpha and GSK-3beta in Wnt/beta-catenin signaling shown by using an allelic series of embryonic stem cell lines. , 2007, Developmental cell.

[57]  S. Lorenzl,et al.  The matrix metalloproteinases inhibitor Ro 28-2653 [correction of Ro 26-2853] extends survival in transgenic ALS mice. , 2006, Experimental neurology.

[58]  M. Mattson,et al.  Anti-apoptotic actions of cycloheximide: blockade of programmed cell death or induction of programmed cell life? , 2004, Apoptosis.

[59]  Ya-min Wu,et al.  Directed differentiation of embryonic stem cells into motor neurons by gene , 2004 .

[60]  R. Miller,et al.  Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). , 2003, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[61]  Z. Xia,et al.  Signaling pathways mediating anti-apoptotic action of neurotrophins. , 2000, Acta neurobiologiae experimentalis.

[62]  Glycogen Synthase Kinase-3 (cid:1) Phosphorylates Bax and Promotes Its Mitochondrial Localization during Neuronal Apoptosis , 2022 .