Applying quantitative semantics to higher-order quantum computing

Finding a denotational semantics for higher order quantum computation is a long-standing problem in the semantics of quantum programming languages. Most past approaches to this problem fell short in one way or another, either limiting the language to an unusably small finitary fragment, or giving up important features of quantum physics such as entanglement. In this paper, we propose a denotational semantics for a quantum lambda calculus with recursion and an infinite data type, using constructions from quantitative semantics of linear logic.

[1]  Ichiro Hasuo,et al.  Semantics of Higher-Order Quantum Computation via Geometry of Interaction , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[2]  Giulio Manzonetto,et al.  Weighted Relational Models of Typed Lambda-Calculi , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[3]  Octavio Malherbe,et al.  Categorical models of computation: partially traced categories and presheaf models of quantum computation , 2013, 1301.5087.

[4]  Jean-Yves Girard Coherent Banach Spaces: A Continuous Denotational Semantics , 1999, Theor. Comput. Sci..

[5]  Benoît Valiron,et al.  A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.

[6]  P. Selinger,et al.  Quantum lambda calculus , 2010 .

[7]  Paul-André Melliès CATEGORICAL SEMANTICS OF LINEAR LOGIC , 2009 .

[8]  P. Selinger Towards a semantics for higher-order quantum computation , 2004 .

[9]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[10]  Klaus Keimel,et al.  D-completions and the d-topology , 2009, Ann. Pure Appl. Log..

[11]  E. Knill,et al.  Conventions for quantum pseudocode , 1996, 2211.02559.

[12]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[13]  Nicolas Tabareau,et al.  An explicit formula for the free exponential modality of linear logic , 2009, Mathematical Structures in Computer Science.

[14]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[15]  Dongsheng Zhao,et al.  Dcpo-completion of posets , 2010, Theor. Comput. Sci..

[16]  Benoît Valiron,et al.  On a Fully Abstract Model for a Quantum Linear Functional Language: (Extended Abstract) , 2008, QPL.

[17]  Thomas Ehrhard,et al.  Finiteness spaces , 2005, Mathematical Structures in Computer Science.

[18]  Benoît Valiron,et al.  Semantics for a Higher Order Functional Programming Language for Quantum Computation , 2008 .

[19]  Thomas Ehrhard,et al.  Probabilistic coherence spaces as a model of higher-order probabilistic computation , 2011, Inf. Comput..

[20]  Giulio Manzonetto,et al.  Constructing differential categories and deconstructing categories of games , 2013, Inf. Comput..

[21]  Ugo Dal Lago,et al.  Confluence Results for a Quantum Lambda Calculus with Measurements , 2011, Electron. Notes Theor. Comput. Sci..

[22]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[23]  Jean-Yves Girard,et al.  Normal functors, power series and λ-calculus , 1988, Ann. Pure Appl. Log..