Supernova Photometric Classification Pipelines Trained on Spectroscopically Classified Supernovae from the Pan-STARRS1 Medium-deep Survey

Photometric classification of supernovae (SNe) is imperative as recent and upcoming optical time-domain surveys, such as the Large Synoptic Survey Telescope (LSST), overwhelm the available resources for spectrosopic follow-up. Here we develop a range of light curve classification pipelines, trained on 518 spectroscopically-classified SNe from the Pan-STARRS1 Medium-Deep Survey (PS1-MDS): 357 Type Ia, 93 Type II, 25 Type IIn, 21 Type Ibc, and 17 Type I SLSNe. We present a new parametric analytical model that can accommodate a broad range of SN light curve morphologies, including those with a plateau, and fit this model to data in four PS1 filters (griz). We test a number of feature extraction methods, data augmentation strategies, and machine learning algorithms to predict the class of each SN. Our best pipelines result in 90% average accuracy, 70% average purity, and 80% average completeness for all SN classes, with the highest success rates for Type Ia SNe and SLSNe and the lowest for Type Ibc SNe. Despite the greater complexity of our classification scheme, the purity of our Type Ia SN classification, 95%, is on par with methods developed specifically for Type Ia versus non-Type Ia binary classification. As the first of its kind, this study serves as a guide to developing and training classification algorithms for a wide range of SN types with a purely empirical training set, particularly one that is similar in its characteristics to the expected LSST main survey strategy. Future work will implement this classification pipeline on ~3000 PS1/MDS light curves that lack spectroscopic classification.

[1]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[2]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[3]  R. Thomas,et al.  A Comparative Study of the Absolute Magnitude Distributions of Supernovae , 2001, astro-ph/0112051.

[4]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[5]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[6]  Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey , 2005, astro-ph/0509240.

[7]  D. Kasen Secondary Maximum in the Near-Infrared Light Curves of Type Ia Supernovae , 2006, astro-ph/0606449.

[8]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[9]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[10]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[11]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[12]  Donald W. Sweeney,et al.  Large Synoptic Survey Telescope: From Science Drivers to Reference Design , 2008 .

[13]  M. Sullivan,et al.  The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.

[14]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[15]  N. S. Philip,et al.  Results from the Supernova Photometric Classification Challenge , 2010, 1008.1024.

[16]  Melvin M. Varughese,et al.  Statistical classification techniques for photometric supernova typing , 2010, 1010.1005.

[17]  Gautham Narayan,et al.  PRECISE THROUGHPUT DETERMINATION OF THE PanSTARRS TELESCOPE AND THE GIGAPIXEL IMAGER USING A CALIBRATED SILICON PHOTODIODE AND A TUNABLE LASER: INITIAL RESULTS , 2010, 1003.3465.

[18]  Larry Denneau,et al.  The Pan-STARRS wide-field optical/NIR imaging survey , 2010, Astronomical Telescopes + Instrumentation.

[19]  David Huard,et al.  PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.

[20]  Gautham Narayan,et al.  TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED , 2010, 1011.5910.

[21]  Chad M. Schafer,et al.  Semi-supervised learning for photometric supernova classification★ , 2011, 1103.6034.

[22]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[23]  S. B. Cenko,et al.  THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES , 2010, 1011.4959.

[24]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[25]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[26]  A. Pastorello,et al.  SYSTEMATIC UNCERTAINTIES ASSOCIATED WITH THE COSMOLOGICAL ANALYSIS OF THE FIRST PAN-STARRS1 TYPE Ia SUPERNOVA SAMPLE , 2013, 1310.3824.

[27]  S. E. Persson,et al.  Carnegie Supernova Project: Observations of Type IIn supernovae ⋆ , 2013, 1304.3038.

[28]  E. Ishida,et al.  Kernel PCA for Type Ia supernovae photometric classification , 2012, 1201.6676.

[29]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[30]  F. Feroz,et al.  A simple and robust method for automated photometric classification of supernovae using neural networks , 2012, 1208.1264.

[31]  S. Gezari,et al.  THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT , 2013, 1309.3009.

[32]  R. Nichol,et al.  COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY , 2012, 1211.4480.

[33]  S. Smartt,et al.  HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.

[34]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[35]  S. Gezari,et al.  RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS FROM PAN-STARRS1 , 2014, 1405.3668.

[36]  S. Gezari,et al.  TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1 , 2014, 1404.2004.

[37]  J. Weller,et al.  Data augmentation for machine learning redshifts applied to Sloan Digital Sky Survey galaxies , 2015, 1501.06759.

[38]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[39]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[40]  K. Maguire,et al.  Near-infrared light curves of Type Ia supernovae: studying properties of the second maximum , 2015, 1502.00568.

[41]  A. Riess,et al.  Measuring the Properties of Dark Energy with Photometrically Classified Pan-STARRS Supernovae. I. Systematic Uncertainty from Core-collapse Supernova Contamination , 2016, 1611.07042.

[42]  P. A. Price,et al.  The Pan-STARRS Data-processing System , 2016, The Astrophysical Journal Supplement Series.

[43]  Tom Charnock,et al.  Deep Recurrent Neural Networks for Supernovae Classification , 2016, ArXiv.

[44]  R. J. Wainscoat,et al.  Pan-STARRS Photometric and Astrometric Calibration , 2016, The Astrophysical Journal Supplement Series.

[45]  O. Lahav,et al.  PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING , 2016, 1603.00882.

[46]  R. J. Wainscoat,et al.  Pan-STARRS Pixel Processing: Detrending, Warping, Stacking , 2016, The Astrophysical Journal Supplement Series.

[47]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[48]  N. Palanque-Delabrouille,et al.  Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning , 2016, 1608.05423.

[49]  E. Berger,et al.  Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration–Luminosity Phase Space , 2017, 1707.08132.

[50]  Naonori Ueda,et al.  Single-Epoch Supernova Classification with Deep Convolutional Neural Networks , 2017, 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW).

[51]  Andrew J. Connolly,et al.  Photometric Redshifts with the LSST: Evaluating Survey Observing Strategies , 2017, 1706.09507.

[52]  David O. Jones,et al.  Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey , 2017, 1708.01619.

[53]  David O. Jones,et al.  Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters , 2017, 1710.00846.

[54]  E. Berger,et al.  The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT , 2017, 1706.00825.

[55]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[56]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[57]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[58]  C. Scheidegger,et al.  Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream , 2018, 1801.07323.

[59]  A. Mahabal,et al.  Optimizing spectroscopic follow-up strategies for supernova photometric classification with active learning , 2018, Monthly Notices of the Royal Astronomical Society.

[60]  Gautham Narayan,et al.  The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC): Data set , 2018, 1810.00001.

[61]  A. Moss Improved Photometric Classification of Supernovae using Deep Learning , 2018, 1810.06441.

[62]  Edo Berger,et al.  Superluminous Supernovae in LSST: Rates, Detection Metrics, and Light-curve Modeling , 2018, The Astrophysical Journal.

[63]  Gautham Narayan,et al.  RAPID: Early Classification of Explosive Transients Using Deep Learning , 2019, Publications of the Astronomical Society of the Pacific.

[64]  Marc Chaumont,et al.  PELICAN: deeP architecturE for the LIght Curve ANalysis , 2019, Astronomy & Astrophysics.

[65]  A. Möller,et al.  SuperNNova: an open-source framework for Bayesian, neural network-based supernova classification , 2019, Monthly Notices of the Royal Astronomical Society.

[66]  A. J. Connolly,et al.  Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC) , 2019, Publications of the Astronomical Society of the Pacific.

[67]  Daniel Muthukrishna,et al.  DASH: Deep Learning for the Automated Spectral Classification of Supernovae and Their Hosts , 2019, The Astrophysical Journal.