Modeling functional resting-state brain networks through neural message passing on the human connectome

In this work, we propose a natural model for information flow in the brain through a neural message-passing dynamics on a structural network of macroscopic regions, such as the human connectome (HC). In our model, each brain region is assumed to have a binary behavior (active or not), the strengths of interactions among them are encoded in the anatomical connectivity matrix defined by the HC, and the dynamics of the system is defined by the Belief Propagation (BP) algorithm, working near the critical point of the network. We show that in the absence of direct external stimuli the BP algorithm converges to a spatial map of activations that is similar to the Default Mode Network (DMN) of the brain, which has been defined from the analysis of functional MRI data. Moreover, we use Susceptibility Propagation (SP) to compute the matrix of long-range correlations between the different regions and show that the modules defined by a clustering of this matrix resemble several Resting State Networks (RSN) determined experimentally. Both results suggest that the functional DMN and RSNs can be seen as simple consequences of the anatomical structure of the brain and a neural message-passing dynamics between macroscopic regions. With the new model, we explore predictions on how functional maps change when the anatomical brain network suffers structural alterations, like in Alzheimer's disease and in lesions of the Corpus Callosum. The implications and novel interpretations suggested by the model, as well as the role of criticality, are discussed.

[1]  Yasser Roudi,et al.  Correlations and Functional Connections in a Population of Grid Cells , 2014, PLoS Comput. Biol..

[2]  Charles Ollion Susceptibility Propagation for the Inverse Ising Model , 2010 .

[3]  Karl J. Friston,et al.  EEG–fMRI Information Fusion: Biophysics and Data Analysis , 2009 .

[4]  Alan C. Evans,et al.  Multi-level bootstrap analysis of stable clusters in resting-state fMRI , 2009, NeuroImage.

[5]  J. Hertz,et al.  Ising model for neural data: model quality and approximate methods for extracting functional connectivity. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Per Bak,et al.  How Nature Works: The Science of Self‐Organized Criticality , 1997 .

[7]  Olaf Sporns,et al.  THE HUMAN CONNECTOME: A COMPLEX NETWORK , 2011, Schizophrenia Research.

[8]  P. Hagmann From diffusion MRI to brain connectomics , 2005 .

[9]  Daniel L. Rubin,et al.  Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease , 2008, PLoS Comput. Biol..

[10]  Arshdeep Sekhon,et al.  Neural Message Passing for Multi-Label Classification , 2019, ECML/PKDD.

[11]  R. Mulet,et al.  Message passing and Monte Carlo algorithms: Connecting fixed points with metastable states , 2014, 1406.5373.

[12]  Randy L. Buckner,et al.  The serendipitous discovery of the brain's default network , 2012, NeuroImage.

[13]  R. Buckner,et al.  Evidence for the Default Network's Role in Spontaneous Cognition , 2010 .

[14]  R. Buckner,et al.  Functional-Anatomic Fractionation of the Brain's Default Network , 2010, Neuron.

[15]  Mai‐Lan Ho,et al.  Lesions of the corpus callosum. , 2013, AJR. American journal of roentgenology.

[16]  Benjamin J. Shannon,et al.  Coherent spontaneous activity identifies a hippocampal-parietal memory network. , 2006, Journal of neurophysiology.

[17]  Anthony G. Hudetz,et al.  Spin-glass model predicts metastable brain states that diminish in anesthesia , 2014, Front. Syst. Neurosci..

[18]  Kuncheng Li,et al.  Altered functional connectivity in early Alzheimer's disease: A resting‐state fMRI study , 2007, Human brain mapping.

[19]  D. Chialvo,et al.  Self-similar correlation function in brain resting-state functional magnetic resonance imaging , 2010, Journal of The Royal Society Interface.

[20]  M. Raichle The brain's default mode network. , 2015, Annual review of neuroscience.

[21]  Fabrizio De Vico Fallani,et al.  A graph-theoretical approach in brain functional networks. Possible implications in EEG studies , 2010, Nonlinear biomedical physics.

[22]  Karl J. Friston,et al.  Distributed processing; distributed functions? , 2012, NeuroImage.

[23]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[24]  M. Raichle,et al.  Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Dante R. Chialvo Critical brain networks , 2004 .

[26]  Jose M. Sanchez-Bornot,et al.  Model driven EEG/fMRI fusion of brain oscillations , 2009, Human brain mapping.

[27]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[28]  Jean Gotman,et al.  Evaluation of EEG localization methods using realistic simulations of interictal spikes , 2006, NeuroImage.

[29]  Karl J. Friston,et al.  Neuronal message passing using Mean-field, Bethe, and Marginal approximations , 2019, Scientific Reports.

[30]  Adeel Razi,et al.  Dynamic causal modelling revisited , 2017, NeuroImage.

[31]  Pablo Balenzuela,et al.  Criticality in Large-Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis , 2012, Front. Physio..

[32]  Sumio Watanabe,et al.  Accuracy of Loopy belief propagation in Gaussian models , 2009, Neural Networks.

[33]  Karl J. Friston,et al.  The graphical brain: Belief propagation and active inference , 2017, Network Neuroscience.

[34]  Dante R. Chialvo,et al.  What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations , 2010, Front. Physio..

[35]  G. Deco,et al.  Ongoing Cortical Activity at Rest: Criticality, Multistability, and Ghost Attractors , 2012, The Journal of Neuroscience.

[36]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[37]  Daniel J. Amit,et al.  Modeling brain function: the world of attractor neural networks, 1st Edition , 1989 .

[38]  Davide Ballabio,et al.  Multivariate comparison of classification performance measures , 2017 .

[39]  Sompolinsky,et al.  Spin-glass models of neural networks. , 1985, Physical review. A, General physics.

[40]  Karl J. Friston,et al.  A dynamic causal model study of neuronal population dynamics , 2010, NeuroImage.

[41]  Xi-Nian Zuo,et al.  Harnessing reliability for neuroscience research , 2019, Nature Human Behaviour.

[42]  Karl J. Friston Functional and Effective Connectivity: A Review , 2011, Brain Connect..

[43]  E. Marinari,et al.  Intrinsic limitations of the susceptibility propagation inverse inference for the mean field Ising spin glass , 2010 .

[44]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[45]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[46]  F. Ricci-Tersenghi The Bethe approximation for solving the inverse Ising problem: a comparison with other inference methods , 2011, 1112.4814.

[47]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[48]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[49]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[50]  M. V. D. Heuvel,et al.  Exploring the brain network: A review on resting-state fMRI functional connectivity , 2010, European Neuropsychopharmacology.

[51]  Leon Danon,et al.  Comparing community structure identification , 2005, cond-mat/0505245.

[52]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[53]  Lester Melie-García,et al.  Characterizing brain anatomical connections using diffusion weighted MRI and graph theory , 2007, NeuroImage.

[54]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[55]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[56]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[57]  Daniel P. Kennedy,et al.  Intact Bilateral Resting-State Networks in the Absence of the Corpus Callosum , 2011, The Journal of Neuroscience.

[58]  F. M. Gafarov,et al.  Neural electrical activity and neural network growth , 2018, Neural Networks.

[59]  Aggelos K. Katsaggelos,et al.  Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors , 2011, NeuroImage.

[60]  Gretel Sanabria-Diaz,et al.  Glucose Metabolism during Resting State Reveals Abnormal Brain Networks Organization in the Alzheimer’s Disease and Mild Cognitive Impairment , 2013, PloS one.

[61]  Gustavo Deco,et al.  Cortico-cortical communication dynamics , 2014, Front. Syst. Neurosci..

[62]  Adeel Razi,et al.  On nodes and modes in resting state fMRI , 2014, NeuroImage.

[63]  John A. Stankovic,et al.  Distributed Processing , 1978, Computer.

[64]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[65]  D. Chialvo,et al.  Ising-like dynamics in large-scale functional brain networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  F. Gafarov Emergence of the small-world architecture in neural networks by activity dependent growth , 2016 .

[67]  Jessica R. Andrews-Hanna,et al.  The Brain’s Default Network and Its Adaptive Role in Internal Mentation , 2012, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[68]  J A Swets,et al.  Measuring the accuracy of diagnostic systems. , 1988, Science.

[69]  M. Raichle,et al.  On the role of the corpus callosum in interhemispheric functional connectivity in humans , 2017, Proceedings of the National Academy of Sciences.

[70]  Paul J. Laurienti,et al.  The Brain as a Complex System: Using Network Science as a Tool for Understanding the Brain , 2011, Brain Connect..

[71]  A. Fleisher,et al.  Altered default mode network connectivity in alzheimer's disease—A resting functional MRI and bayesian network study , 2011, Human brain mapping.

[72]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[73]  Guido Caldarelli,et al.  Organization and hierarchy of the human functional brain network lead to a chain-like core , 2017, Scientific Reports.

[74]  B. W. van Dijk,et al.  Opportunities and methodological challenges in EEG and MEG resting state functional brain network research , 2015, Clinical Neurophysiology.

[75]  Edward T. Bullmore,et al.  Broadband Criticality of Human Brain Network Synchronization , 2009, PLoS Comput. Biol..

[76]  Dante R Chialvo,et al.  Brain organization into resting state networks emerges at criticality on a model of the human connectome. , 2012, Physical review letters.

[77]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[78]  Nelson J. Trujillo-Barreto,et al.  A symmetrical Bayesian model for fMRI and EEG/MEG neuroimage fusion , 2001 .

[79]  Danielle S. Bassett,et al.  Modeling and interpreting mesoscale network dynamics , 2017, NeuroImage.

[80]  Cornelis J. Stam,et al.  Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain , 2008, NeuroImage.

[81]  M. Greicius,et al.  Resting-state functional connectivity reflects structural connectivity in the default mode network. , 2009, Cerebral cortex.

[82]  Functional Connectivity of the Corpus Callosum in Epilepsy Patients with Secondarily Generalized Seizures , 2017, Front. Neurol..

[83]  S. Laureys,et al.  Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory , 2014, BioMed research international.

[84]  S. Abaimov Statistical Physics of Non-Thermal Phase Transitions , 2015 .

[85]  Karl J. Friston,et al.  EEG-fMRI integration: a critical review of biophysical modeling and data analysis approaches. , 2010, Journal of integrative neuroscience.

[86]  Karl J. Friston Functional Integration in the Brain , 2003 .

[87]  O. Sporns Structure and function of complex brain networks , 2013, Dialogues in clinical neuroscience.

[88]  Gustavo Deco,et al.  How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model , 2012, Front. Comput. Neurosci..

[89]  Sergey N. Dorogovtsev,et al.  Ising Model on Networks with an Arbitrary Distribution of Connections , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  Judea Pearl,et al.  BELIEF UPDATING BY NETWORK PROPAGATION , 1988 .

[91]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[92]  E. Aurell,et al.  Dynamics and performance of susceptibility propagation on synthetic data , 2010, 1005.3694.

[93]  Ruedi Stoop,et al.  The Neurodynamics of Belief Propagation on Binary Markov Random Fields , 2006, NIPS.

[94]  Olaf Sporns,et al.  Graph theory methods: applications in brain networks , 2018, Dialogues in clinical neuroscience.

[95]  Erik Aurell,et al.  Inferring network connectivity using kinetic Ising models , 2010, BMC Neuroscience.

[96]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[97]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[98]  Richard F. Betzel,et al.  Modular Brain Networks. , 2016, Annual review of psychology.

[99]  Javier M. Buldú,et al.  Functional brain networks: great expectations, hard times and the big leap forward , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[100]  Karl J. Friston,et al.  Perception and self-organized instability , 2012, Front. Comput. Neurosci..

[101]  Joachim M. Buhmann,et al.  A generative model of whole-brain effective connectivity , 2018, NeuroImage.

[102]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[103]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[104]  Vangelis Sakkalis,et al.  Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG , 2011, Comput. Biol. Medicine.

[105]  Daniele Marinazzo,et al.  Information Transfer and Criticality in the Ising Model on the Human Connectome , 2014, PloS one.

[106]  Jean-Philippe Thiran,et al.  Structural connectomics in brain diseases , 2013, NeuroImage.