Exact calculations for false discovery proportion with application to least favorable configurations

In a context of multiple hypothesis testing, we provide several new exact calculations related to the false discovery proportion (FDP) of step-up and step-down procedures. For step-up procedures, we show that the number of erroneous rejections conditionally on the rejection number is simply a binomial variable, which leads to explicit computations of the c.d.f., the {$s$-th} moment and the mean of the FDP, the latter corresponding to the false discovery rate (FDR). For step-down procedures, we derive what is to our knowledge the first explicit formula for the FDR valid for any alternative c.d.f. of the $p$-values. We also derive explicit computations of the power for both step-up and step-down procedures. These formulas are ``explicit'' in the sense that they only involve the parameters of the model and the c.d.f. of the order statistics of i.i.d. uniform variables. The $p$-values are assumed either independent or coming from an equicorrelated multivariate normal model and an additional mixture model for the true/false hypotheses is used. This new approach is used to investigate new results which are of interest in their own right, related to least/most favorable configurations for the FDR and the variance of the FDP.

[1]  A. Stuart Equally Correlated Variates and the Multinormal Integral , 1958 .

[2]  Étienne Roquain,et al.  Optimal weighting for false discovery rate control , 2008, 0807.4081.

[3]  D. Donoho,et al.  Higher criticism for detecting sparse heterogeneous mixtures , 2004, math/0410072.

[4]  P. Neuvial Asymptotic properties of false discovery rate controlling procedures under independence , 2008, 0803.2111.

[5]  L. Wasserman,et al.  Operating characteristics and extensions of the false discovery rate procedure , 2002 .

[6]  John D. Storey The positive false discovery rate: a Bayesian interpretation and the q-value , 2003 .

[7]  Wenge Guo,et al.  On control of the false discovery rate under no assumption of dependency , 2008 .

[8]  P. Seeger A Note on a Method for the Analysis of Significances en masse , 1968 .

[9]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[10]  T. Dickhaus False Discovery Rate and Asymptotics , 2008 .

[11]  John D. Storey,et al.  Empirical Bayes Analysis of a Microarray Experiment , 2001 .

[12]  L. Wasserman,et al.  A stochastic process approach to false discovery control , 2004, math/0406519.

[13]  E. Domany,et al.  FDR Control with adaptive procedures and FDR monotonicity , 2009, 0909.3704.

[14]  李幼升,et al.  Ph , 1989 .

[15]  G. P. Steck,et al.  Moments of Order Statistics from the Equicorrelated Multivariate Normal Distribution , 1962 .

[16]  H. Finner,et al.  Multiple hypotheses testing and expected number of type I. errors , 2002 .

[17]  Joseph P. Romano,et al.  Generalizations of the familywise error rate , 2005, math/0507420.

[18]  Y. Benjamini,et al.  An adaptive step-down procedure with proven FDR control under independence , 2009, 0903.5373.

[19]  T. Dickhaus,et al.  On the false discovery rate and an asymptotically optimal rejection curve , 2009, 0903.5161.

[20]  Bradley Efron,et al.  Microarrays, Empirical Bayes and the Two-Groups Model. Rejoinder. , 2008, 0808.0572.

[21]  Gilles Blanchard,et al.  Adaptive FDR control under independence and dependence , 2007, 0707.0536.

[22]  N. Bingham EMPIRICAL PROCESSES WITH APPLICATIONS TO STATISTICS (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[23]  Z. Tan,et al.  POSITIVE FALSE DISCOVERY PROPORTIONS: INTRINSIC BOUNDS AND ADAPTIVE CONTROL , 2005 .

[24]  G. Blanchard,et al.  Two simple sufficient conditions for FDR control , 2008, 0802.1406.

[25]  J. A. Ferreira,et al.  On the Benjamini-Hochberg method , 2006, math/0611265.

[26]  K. Muller,et al.  Exact Calculations of Average Power for the Benjamini-Hochberg Procedure , 2008, The international journal of biostatistics.

[27]  Gilles Blanchard,et al.  Adaptive False Discovery Rate Control under Independence and Dependence , 2009, J. Mach. Learn. Res..

[28]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[29]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[30]  Y. Benjamini,et al.  Adaptive linear step-up procedures that control the false discovery rate , 2006 .

[31]  B. Efron Correlated z-Values and the Accuracy of Large-Scale Statistical Estimates , 2010, Journal of the American Statistical Association.

[32]  Zhiyi Chi On the performance of FDR control: Constraints and a partial solution , 2007, 0710.3287.

[33]  R. Simes,et al.  An improved Bonferroni procedure for multiple tests of significance , 1986 .

[34]  S. Sarkar Some Results on False Discovery Rate in Stepwise multiple testing procedures , 2002 .

[35]  A. Reiner-Benaim FDR Control by the BH Procedure for Two‐Sided Correlated Tests with Implications to Gene Expression Data Analysis , 2007, Biometrical journal. Biometrische Zeitschrift.

[36]  T. Dickhaus,et al.  Dependency and false discovery rate: Asymptotics , 2007, 0710.3171.

[37]  S. Sarkar On Methods Controlling the False Discovery Rate 1 , 2009 .