Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia.

BACKGROUND Behavioral variant frontotemporal dementia (bvFTD) strikes hardest at the frontal lobes, but the sites of earliest injury remain unclear. OBJECTIVE To determine atrophy patterns in distinct clinical stages of bvFTD, testing the hypothesis that the mildest stage is restricted to frontal paralimbic cortex. DESIGN A bvFTD cohort study. SETTING University hospital dementia clinic. PARTICIPANTS Patients with bvFTD with Clinical Dementia Rating (CDR) scale scores of 0.5 (n = 15), 1 (n = 15), or 2 to 3 (n = 15) age and sex matched to each other and to 45 healthy controls. MAIN OUTCOME MEASURES Magnetic resonance voxel-based morphometry estimated gray matter and white matter atrophy at each disease stage compared with controls. RESULTS Patients with a CDR score of 0.5 had gray matter loss in frontal paralimbic cortices, but atrophy also involved a network of anterior cortical and subcortical regions. A CDR score of 1 showed more extensive frontal gray matter atrophy and white matter losses in corpus callosum and brainstem. A CDR score of 2 to 3 showed additional posterior insula, hippocampus, and parietal involvement, with white matter atrophy in presumed frontal projection fibers. CONCLUSIONS Very mild bvFTD targets a specific subset of frontal and insular regions. More advanced disease affects white matter and posterior gray matter structures densely interconnected with the sites of earliest injury.

[1]  R. Faber,et al.  Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. , 1999, Neurology.

[2]  K Yaffe,et al.  Frontotemporal dementia progresses to death faster than Alzheimer disease , 2005, Neurology.

[3]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[4]  Stefan Poljansky,et al.  Contrasting metabolic impairment in frontotemporal degeneration and early onset Alzheimer's disease , 2004, NeuroImage.

[5]  J. Morris The Clinical Dementia Rating (CDR) , 1993, Neurology.

[6]  B. Sahakian,et al.  Temporal lobe rating scale: application to Alzheimer's disease and frontotemporal dementia , 2001, Journal of neurology, neurosurgery, and psychiatry.

[7]  B L Miller,et al.  Patterns of brain atrophy in frontotemporal dementia and semantic dementia , 2002, Neurology.

[8]  Guy B. Williams,et al.  Patterns of Frontal Lobe Atrophy in Frontotemporal Dementia: A Volumetric MRI Study , 2006, Dementia and Geriatric Cognitive Disorders.

[9]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  J. Hodges,et al.  Progression in frontotemporal dementia: identifying a benign behavioral variant by magnetic resonance imaging. , 2006, Archives of neurology.

[11]  Karalyn Patterson,et al.  Left/right asymmetry of atrophy in semantic dementia , 2003, Neurology.

[12]  J. Cohen,et al.  Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. , 2000, Science.

[13]  J. Hodges,et al.  Survival in frontotemporal dementia , 2003, Neurology.

[14]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[15]  Patrick R Hof,et al.  Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae) , 2007, Anatomical record.

[16]  Daniela Perani,et al.  Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration , 2005, Annals of neurology.

[17]  M. Mesulam,et al.  Insula of the old world monkey. III: Efferent cortical output and comments on function , 1982, The Journal of comparative neurology.

[18]  A. Drzezga,et al.  Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study , 2007, Neurobiology of Aging.

[19]  Paola Scifo,et al.  Evidence of white matter changes on diffusion tensor imaging in frontotemporal dementia. , 2007, Archives of neurology.

[20]  Nick C Fox,et al.  Longitudinal Patterns of Regional Change on Volumetric MRI in Frontotemporal Lobar Degeneration , 2004, Dementia and Geriatric Cognitive Disorders.

[21]  C. Jack,et al.  Patterns of atrophy in pathologically confirmed FTLD with and without motor neuron degeneration , 2006, Neurology.

[22]  Brian Avants,et al.  The Correlation of Cognitive Decline with Frontotemporal Dementia Induced Annualized Gray Matter Loss Using Diffeomorphic Morphometry , 2005, Alzheimer disease and associated disorders.

[23]  D. Yves von Cramon,et al.  Neural networks in frontotemporal dementia—A meta-analysis , 2008, Neurobiology of Aging.

[24]  C. Economo,et al.  Eine neue art spezialzellen des lobus cinguli und lobus insulae , 1926 .

[25]  John Ashburner,et al.  A tensor based morphometry study of longitudinal gray matter contraction in FTD , 2007, NeuroImage.

[26]  M. Freedman,et al.  Frontotemporal lobar degeneration , 1998, Neurology.

[27]  J. Allman,et al.  Early frontotemporal dementia targets neurons unique to apes and humans , 2006, Annals of neurology.

[28]  J. Kril,et al.  Distribution of brain atrophy in behavioral variant frontotemporal dementia , 2005, Journal of the Neurological Sciences.

[29]  K. Ishii,et al.  Cerebral glucose metabolism in patients with frontotemporal dementia. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[30]  Hiroshi Honda,et al.  Cerebral white matter degeneration in frontotemporal dementia detected by diffusion-weighted magnetic resonance imaging. , 2006, Academic radiology.

[31]  C. DeCarli,et al.  Rate of progression differs in frontotemporal dementia and Alzheimer disease , 2005, Neurology.

[32]  A. Brun,et al.  Limbic lobe involvement in presenile dementia , 1978, Archiv für Psychiatrie und Nervenkrankheiten.

[33]  Nick C Fox,et al.  Rates of global and regional cerebral atrophy in AD and frontotemporal dementia , 2001, Neurology.

[34]  K. Ishii,et al.  Alteration of white matter MR signal intensity in frontotemporal dementia. , 1997, AJNR. American journal of neuroradiology.

[35]  Marina Boccardi,et al.  Frontotemporal dementia as a neural system disease , 2005, Neurobiology of Aging.

[36]  H. Critchley Neural mechanisms of autonomic, affective, and cognitive integration , 2005, The Journal of comparative neurology.

[37]  J. Allman,et al.  A neuronal morphologic type unique to humans and great apes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Allman,et al.  Intuition and autism: a possible role for Von Economo neurons , 2005, Trends in Cognitive Sciences.

[39]  B. L. Miller,et al.  The natural history of temporal variant frontotemporal dementia , 2005, Neurology.

[40]  Sandra E. Black,et al.  Topographical Patterns of Lobar Atrophy in Frontotemporal Dementia and Alzheimer’s Disease , 2006, Dementia and Geriatric Cognitive Disorders.

[41]  F. Fazio,et al.  Frontotemporal dementia: impact of P301L tau mutation on a healthy carrier , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[42]  J. Hodges,et al.  Staging disease severity in pathologically confirmed cases of frontotemporal dementia , 2003, Neurology.

[43]  Bruno Alfano,et al.  Voxel-based comparison of rCBF SPET images in frontotemporal dementia and Alzheimer's disease highlights the involvement of different cortical networks , 2002, European Journal of Nuclear Medicine and Molecular Imaging.