An Overview of Haar Wavelet Method for Solving Differential and Integral Equations

Investigation of various wavelet methods, for its capability of analyzing various dynamic phenomena through waves gained more and more attention in engineering research. Starting from 'offering good solution to differential equations' to capturing the nonlinearity in the data distribution, wavelets are used as appropriate tools that provide good mathematical model for scientific phenomena, which are usually modeled through linear or nonlinear differential equations. Review shows that the Haar wavelet method (HWM) is efficient and powerful in solving wide class of linear and nonlinear differential equations. The discrete wavelet transform has gained the reputation of being a very effective signal analysis tool for many practical applications. This review intends to provide the great utility of Haar wavelets to science and engineering problems which owes its origin to 191 0. Besides future scope and directions involved in developing Haar wavelet algorithm for solving differential equations are addressed.

[1]  Farshid Mirzaee,et al.  Using rationalized Haar wavelet for solving linear integral equations , 2005, Appl. Math. Comput..

[2]  Gokul Hariharan,et al.  Haar wavelet in estimating depth profile of soil temperature , 2009, Appl. Math. Comput..

[3]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[4]  Reinhold Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression , 1998 .

[5]  B. Lohmann,et al.  Haar Wavelet-based Robust Optimal Control for Vibration Reduction of Vehicle Engine–body System , 2007 .

[6]  Ülo Lepik Solving PDEs with the aid of two-dimensional Haar wavelets , 2011, Comput. Math. Appl..

[7]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[8]  Kazuhisa Abe,et al.  An h-hierarchical Galerkin BEM using Haar wavelets , 2001 .

[9]  H. Hein,et al.  Free vibrations of non-uniform and axially functionally graded beams using Haar wavelets , 2011 .

[10]  G. Hariharan Solving Finite Length Beam Equation by the Haar Wavelet Method , 2010 .

[11]  Gennady N. Chuev,et al.  An operational Haar wavelet method for solving fractional Volterra integral equations , 2011, Int. J. Appl. Math. Comput. Sci..

[12]  C. F. Chen,et al.  Haar wavelet method for solving lumped and distributed-parameter systems , 1997 .

[13]  Yadollah Ordokhani,et al.  Solution of differential equations via rationalized Haar functions , 2001 .

[14]  Ülo Lepik Solving integral and differential equations by the aid of non-uniform Haar wavelets , 2008, Appl. Math. Comput..

[15]  Ülo Lepik,et al.  Application of the Haar wavelet transform to solving integral and differential equations , 2007, Proceedings of the Estonian Academy of Sciences. Physics. Mathematics.

[16]  Adefemi Sunmonu Implementation of Wavelet Solutions to Second Order Differential Equations with Maple , 2012 .

[17]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[19]  Ülo Lepik,et al.  Haar wavelet method for nonlinear integro-differential equations , 2006, Appl. Math. Comput..

[20]  K. Kannan,et al.  A comparison of Haar wavelet and Adomain decomposition method for solving one-dimensional reaction-diffusion equations , 2010 .

[21]  Weiwei Zhao,et al.  Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations , 2010, Appl. Math. Comput..

[22]  Adem Kiliçman,et al.  Kronecker operational matrices for fractional calculus and some applications , 2007, Appl. Math. Comput..

[23]  A Modified Wavelet Algorithm to Solve BVPs with An Infinite Number of Boundary Conditions , 2011 .

[24]  Jiunn-Lin Wu,et al.  A new operational approach for solving fractional calculus and fractional differential equations numerically , 2003, ICSE 2003.

[25]  S. Sohrabi,et al.  Two-dimensional wavelets for numerical solution of integral equations , 2012 .

[26]  Masaaki Ohkita,et al.  An application of rationalized Haar functions to solution of linear partial differential equations , 1988 .

[27]  Siraj-ul-Islam,et al.  A comparative study of numerical integration based on Haar wavelets and hybrid functions , 2010, Comput. Math. Appl..

[28]  K. Kannan,et al.  Haar wavelet method for solving some nonlinear Parabolic equations , 2010, Forum for Interdisciplinary Mathematics.

[29]  Carlo Cattani Haar Wavelet Splines , 2001 .

[30]  Yiming Chen,et al.  Wavelet method for a class of fractional convection-diffusion equation with variable coefficients , 2010, J. Comput. Sci..

[31]  Zhi Shi,et al.  Application of Haar wavelet method to eigenvalue problems of high order differential equations , 2012 .

[32]  M. M. Hosseini,et al.  A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations , 2011, J. Frankl. Inst..

[33]  V. Ponnusami,et al.  Wavelet method to film-pore diffusion model for methylene blue adsorption onto plant leaf powders , 2012, Journal of Mathematical Chemistry.

[34]  K. Kannan,et al.  A Comparative Study of a Haar Wavelet Method and a Restrictive Taylor's Series Method for Solving Convection-diffusion Equations , 2010 .

[35]  Seiichiro Moro,et al.  A modified method for circuit analysis using haar wavelet transform with adaptive resolution — For circuits with waveform with sharp convex ranges— , 2009, 2009 European Conference on Circuit Theory and Design.

[36]  C. H. Hsiao Wavelets approach to time-varying functional differential equations , 2010, Int. J. Comput. Math..

[38]  Kazuhisa Abe,et al.  Application of Haar wavelets to time-domain BEM for the transient scalar wave equation , 2010 .

[39]  Andrew K. Chan,et al.  Fundamentals of Wavelets: Theory, Algorithms, and Applications , 2011 .

[40]  Paul Rodriguez,et al.  Numerical modeling of lightning based on the traveling wave equations , 2009 .

[41]  C. F. Chen,et al.  Wavelet approach to optimising dynamic systems , 1999 .

[42]  Wei-Sun Jiang,et al.  The Haar wavelets operational matrix of integration , 1996, Int. J. Syst. Sci..

[43]  Ü. Lepik Exploring Vibrations of Cracked Beams by the Haar Wavelet Method , 2012 .

[44]  Ülo Lepik,et al.  Haar wavelet method for solving stiff differential equations , 2009 .

[45]  Zhi Shi,et al.  Numerical solution of one-dimensional biharmonic equations using Haar wavelets , 2009, 2009 International Conference on Wavelet Analysis and Pattern Recognition.

[46]  Haar wavelets basis method for Nash equilibrium strategies , 2008, 2008 International Conference on Wavelet Analysis and Pattern Recognition.

[47]  Xiaozhong Liao,et al.  Discretization algorithm for fractional order integral by Haar wavelet approximation , 2011, Appl. Math. Comput..

[48]  Jaideva C. Goswami,et al.  Fundamentals of wavelets , 1999 .

[49]  G. Strang Wavelet transforms versus Fourier transforms , 1993, math/9304214.

[50]  Ulo Lepik Solving differential and integral equations by the Haar wavelet method; revisited , 2008 .

[51]  Wen-June Wang,et al.  Haar wavelet approach to nonlinear stiff systems , 2001 .

[52]  Arshed Ali Numerical Solution of Fourth Order Boundary-Value Problems Using Haar Wavelets , 2011 .

[53]  Zhi Shi,et al.  Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method , 2012 .

[54]  B. Cheng,et al.  Analysis and parameter estimation of bilinear systems via block-pulse functions , 1982 .

[55]  Siraj-ul-Islam,et al.  Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems , 2011 .

[56]  C. H. Hsiao,et al.  Numerical solution of time-varying functional differential equations via Haar wavelets , 2007, Appl. Math. Comput..

[57]  Yadollah Ordokhani,et al.  An application of rationalized Haar functions for variational problems , 2001, Appl. Math. Comput..

[58]  M. Ohkita,et al.  An application of rationalized Haar functions to solution of linear differential equations , 1986 .

[59]  Mohsen Razzaghi,et al.  Legendre wavelets method for the solution of nonlinear problems in the calculus of variations , 2001 .

[60]  Fengqun Zhao,et al.  Haar Wavelet Method for Solving Two-Dimensional Burgers’ Equation , 2012 .

[61]  Gokul Hariharan,et al.  Haar wavelet method for solving Fisher's equation , 2009, Appl. Math. Comput..

[62]  Martin Eerme,et al.  Weak formulation based Haar wavelet method for solving differential equations , 2009, Appl. Math. Comput..

[63]  Peter N. Heller,et al.  Wavelet matrices and the representation of discrete functions , 1993 .

[64]  Esmail Babolian,et al.  Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets , 2009 .

[65]  K. Kannan,et al.  Haar Wavelet Method for Solving Cahn-Allen Equation , 2009 .

[66]  Carlo Cattani Haar wavelets based technique in evolution problems , 2004, Proceedings of the Estonian Academy of Sciences. Physics. Mathematics.

[67]  Basil G. Mertzios,et al.  Analysis of Singular Systems using the Haar Wavelet Transform , 2005 .

[68]  Xiao-Yan Lin,et al.  A Haar Wavelet Solution to Fredholm Equations , 2009, 2009 International Conference on Computational Intelligence and Software Engineering.

[69]  Ülo Lepik Buckling of elastic beams by the Haar wavelet method , 2011 .

[70]  Dong Wang,et al.  Wavelet Method for Nonlinear Partial Differential Equations of Fractional Order , 2011, Comput. Inf. Sci..

[71]  Ülo Lepik,et al.  Numerical solution of differential equations using Haar wavelets , 2005, Math. Comput. Simul..

[72]  Ülo Lepik,et al.  Numerical solution of evolution equations by the Haar wavelet method , 2007, Appl. Math. Comput..

[73]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[74]  Rob Stevenson,et al.  Adaptive wavelet algorithms for elliptic PDE's on product domains , 2008, Math. Comput..

[75]  M. Sezer,et al.  Solving high‐order linear differential equations by a Legendre matrix method based on hybrid Legendre and Taylor polynomials , 2010 .

[76]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[77]  Ülo Lepik,et al.  Solving fractional integral equations by the Haar wavelet method , 2009, Appl. Math. Comput..

[78]  Chun-Hui Hsiao State analysis of linear time delayed systems via Haar wavelets , 1997 .

[79]  Siraj-ul-Islam,et al.  The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets , 2010, Math. Comput. Model..

[80]  C. Chui,et al.  On solving first-kind integral equations using wavelets on a bounded interval , 1995 .

[81]  Mohsen Razzaghi,et al.  Haar wavelets method for solving Pocklington's integral equation , 2004, Kybernetika.

[82]  Hamid Reza Karimi A computational method for optimal control problem of time-varying state-delayed systems by Haar wavelets , 2006, Int. J. Comput. Math..

[83]  Changrong Yi,et al.  Haar wavelet method for solving lumped and distributed-parameter systems , 1997 .

[84]  Hamid Reza Karimi,et al.  A computational method for solving optimal control and parameter estimation of linear systems using Haar wavelets , 2004, Int. J. Comput. Math..

[85]  K. Kannan,et al.  A comparative study of Haar Wavelet Method and Homotopy Perturbation Method for solving one-dimensional Reaction-Diffusion Equations , 2011 .

[86]  Hamid Reza Karimi,et al.  Numerically efficient approximations to the optimal control of linear singularly perturbed systems based on Haar wavelets , 2005, Int. J. Comput. Math..

[87]  M. Rehman,et al.  A numerical method for solving boundary value problems for fractional differential equations , 2012 .

[88]  Siraj-ul-Islam,et al.  Quadrature rules for numerical integration based on Haar wavelets and hybrid functions , 2011, Comput. Math. Appl..

[89]  K. Kannan,et al.  Haar wavelet method for solving FitzHugh-Nagumo equation , 2012 .

[90]  G. Hariharan,et al.  Haar Wavelet Method for Solving the Klein-Gordon and the Sine-Gordon Equations , 2011 .

[91]  N. M. Bujurke,et al.  An application of single-term Haar wavelet series in the solution of nonlinear oscillator equations , 2009 .

[92]  Phang Piau,et al.  Haar Wavelet Matrices Designation in Numerical Solution of Ordinary Differential Equations , 2008 .

[93]  Ulo Lepik,et al.  Haar wavelet method for solving higher order differential equations , 2008 .

[94]  M. Ghasemi,et al.  Numerical solution of time-varying delay systems by Chebyshev wavelets , 2011 .

[95]  H. L. Resnikoff,et al.  Wavelet analysis: the scalable structure of information , 1998 .

[96]  I. Çelik Haar wavelet method for solving generalized Burgers–Huxley equation , 2012 .

[97]  N. M. Bujurke,et al.  Numerical solution of stiff systems from nonlinear dynamics using single-term Haar wavelet series , 2008 .

[98]  Shyh-Kang Jeng,et al.  Haar Wavelet Scale Domain Method for Solving the Transient Response of Dispersive Transmission Lines with Nonlinear Loads , 2002 .

[99]  Qing-Jiang Chen,et al.  Numerical solution of differential equations by using Haar wavelets , 2007, 2007 International Conference on Wavelet Analysis and Pattern Recognition.

[100]  G. Hariharan Wavelet Method for a Class of Fractional Klein-Gordon Equations , 2013 .

[101]  Behzad Moshiri,et al.  Haar Wavelet-Based Approach for Optimal Control of Second-Order Linear Systems in Time Domain , 2005 .