Seeing More Clearly: Recent Advances in Understanding Retinal Circuitry

Among 10 breakthroughs that Science announced at the end of 2002 was the discovery of a photosensing (melanopsin-containing) retinal ganglion cell (RGC) and its role in entraining the circadian clock. This breakthrough exemplifies the ultimate goal of neuroscience: to understand the nervous system from molecules to behavior. Light-sensing RGCs constitute one of a dozen discrete RGC populations coding various aspects of visual scenes by virtue of their unique morphology, physiology, and coverage of the retina. Interestingly, the function of the melanopsin-containing RGCs in entraining the circadian clock need not involve much retinal processing, making it the simplest form of processing in the retina. This review focuses on recent advances in our understanding of retinal circuitry, visual processing, and retinal development demonstrated by innovative experimental techniques. It also discusses the advantages of using the retina as a model system to address some of the key questions in neuroscience.

[1]  S. Nakanishi,et al.  Impairment of Pupillary Responses and Optokinetic Nystagmus in the mGluR6-deficient Mouse , 1997, Neuropharmacology.

[2]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[3]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[4]  S. Massey,et al.  Rod pathways in the mammalian retina use connexin 36 , 2001, The Journal of comparative neurology.

[5]  Richard H. Masland,et al.  Retinal direction selectivity after targeted laser ablation of starburst amacrine cells , 1997, Nature.

[6]  J. Sanes,et al.  Rapid Dendritic Remodeling in the Developing Retina: Dependence on Neurotransmission and Reciprocal Regulation by Rac and Rho , 2000, The Journal of Neuroscience.

[7]  W. R. Taylor,et al.  Diverse Synaptic Mechanisms Generate Direction Selectivity in the Rabbit Retina , 2002, The Journal of Neuroscience.

[8]  Bruce F O'Hara,et al.  Role of Melanopsin in Circadian Responses to Light , 2002, Science.

[9]  R. Weiler,et al.  Visual Transmission Deficits in Mice with Targeted Disruption of the Gap Junction Gene Connexin36 , 2001, The Journal of Neuroscience.

[10]  K. Yau,et al.  Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.

[11]  S. DeVries Correlated firing in rabbit retinal ganglion cells. , 1999, Journal of neurophysiology.

[12]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[13]  D. I. Vaney,et al.  Chapter 2 The mosaic of amacrine cells in the mammalian retina , 1990 .

[14]  S. Massey,et al.  Coupling from AII amacrine cells to ON cone bipolar cells is bidirectional , 2001, The Journal of comparative neurology.

[15]  M. Tachibana,et al.  A Key Role of Starburst Amacrine Cells in Originating Retinal Directional Selectivity and Optokinetic Eye Movement , 2001, Neuron.

[16]  W. P. Hayes,et al.  A Novel Human Opsin in the Inner Retina , 2000, The Journal of Neuroscience.

[17]  W. P. Hayes,et al.  Melanopsin: An opsin in melanophores, brain, and eye. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Jun Lu,et al.  Melanopsin in cells of origin of the retinohypothalamic tract , 2001, Nature Neuroscience.

[19]  R. Stacy,et al.  Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina , 2003, The Journal of comparative neurology.

[20]  M. Mishina,et al.  Regulation by Glycogen Synthase Kinase-3β of the Arborization Field and Maturation of Retinotectal Projection in Zebrafish , 2002, The Journal of Neuroscience.

[21]  J. Simpson The accessory optic system. , 1984, Annual review of neuroscience.

[22]  M. Al-Ubaidi,et al.  Connexin 35: a gap-junctional protein expressed preferentially in the skate retina. , 1996, Molecular biology of the cell.

[23]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[24]  Richard H. Masland,et al.  Starburst Cells Nondirectionally Facilitate the Responses of Direction-Selective Retinal Ganglion Cells , 2002, The Journal of Neuroscience.

[25]  Christian Lohmann,et al.  Transmitter-evoked local calcium release stabilizes developing dendrites , 2002, Nature.

[26]  B. Lom,et al.  Local and Target-Derived Brain-Derived Neurotrophic Factor Exert Opposing Effects on the Dendritic Arborization of Retinal Ganglion Cells In Vivo , 2002, The Journal of Neuroscience.

[27]  Satchidananda Panda,et al.  Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice , 2003, Science.

[28]  K. Yau,et al.  Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice , 2003, Science.

[29]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[30]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[31]  C. W. Oyster,et al.  The analysis of image motion by the rabbit retina , 1968, The Journal of physiology.

[32]  S. DeVries,et al.  Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels , 2000, Neuron.

[33]  Lyle J. Borg-Graham,et al.  The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell , 2001, Nature Neuroscience.

[34]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[35]  M. Biel,et al.  Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice , 2003, Nature.

[36]  S. Massey,et al.  A Series of Biotinylated Tracers Distinguishes Three Types of Gap Junction in Retina , 2000, The Journal of Neuroscience.

[37]  Pamela Reinagel,et al.  Decoding visual information from a population of retinal ganglion cells. , 1997, Journal of neurophysiology.

[38]  R. Foster,et al.  Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[39]  R. Weiler,et al.  Expression of Neuronal Connexin36 in AII Amacrine Cells of the Mammalian Retina , 2001, The Journal of Neuroscience.

[40]  S. Bloomfield,et al.  Connexin36 Is Essential for Transmission of Rod-Mediated Visual Signals in the Mammalian Retina , 2002, Neuron.

[41]  G. E. Pickard,et al.  Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses , 2003, The Journal of comparative neurology.

[42]  Scarla J. Weeks,et al.  Anatomy: Photoreceptive net in the mammalian retina , 2002, Nature.

[43]  Jeffrey L Goldberg,et al.  Amacrine-Signaled Loss of Intrinsic Axon Growth Ability by Retinal Ganglion Cells , 2002, Science.

[44]  F. Amthor,et al.  Effects of the destruction of starburst-cholinergic amacrine cells by the toxin AF64A on rabbit retinal directional selectivity , 2002, Visual Neuroscience.

[45]  Satchidananda Panda,et al.  Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting , 2002, Science.

[46]  William A. Harris,et al.  In Vivo Time-Lapse Imaging of Cell Divisions during Neurogenesis in the Developing Zebrafish Retina , 2003, Neuron.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  D. Baylor,et al.  Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. , 1991, Science.

[49]  R. Weiler,et al.  Molecular and Functional Diversity of Neural Connexins in the Retina , 2000, The Journal of Neuroscience.

[50]  Burton S. Rosner,et al.  Neuropharmacology , 1958, Nature.

[51]  D. Berson,et al.  Strange vision: ganglion cells as circadian photoreceptors , 2003, Trends in Neurosciences.

[52]  Richard H. Masland,et al.  The cholinergic amacrine cell , 1986, Trends in Neurosciences.

[53]  E. Hartveit,et al.  Electrical Synapses Mediate Signal Transmission in the Rod Pathway of the Mammalian Retina , 2002, The Journal of Neuroscience.

[54]  M. Schnitzer,et al.  Multineuronal Firing Patterns in the Signal from Eye to Brain , 2003, Neuron.

[55]  R. Foster,et al.  Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degenerate mice , 2001, Behavioural Brain Research.

[56]  P. Detwiler,et al.  Optical recording of light-evoked calcium signals in the functionally intact retina. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Beaudet,et al.  Mice Lacking Specific Nicotinic Acetylcholine Receptor Subunits Exhibit Dramatically Altered Spontaneous Activity Patterns and Reveal a Limited Role for Retinal Waves in Forming ON and OFF Circuits in the Inner Retina , 2000, The Journal of Neuroscience.

[58]  C. Shatz,et al.  Dynamic Processes Shape Spatiotemporal Properties of Retinal Waves , 1997, Neuron.

[59]  R. Wong,et al.  Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis , 2001, Nature Neuroscience.