Shielding Effectiveness of Composite Materials: Effect of Inclusion Shape

The use of composite materials for electromagnetic shielding applications contributes to the effort of structure lightening in aerospace industry. In these materials the strong interaction between the electromagnetic field and the microstructure makes the standard numerical tools difficult to implement. Indeed these methods would involve an excessive number of degrees of freedom to describe details of the microstructure. An efficient way to overcome this problem is the use of homogenization techniques providing the effective properties of heterogeneous materials. These effective properties can then be introduced in standard numerical tools to estimate the behavior of shielding enclosures. A recent paper proposes an extension to microwave frequencies of quasistatic homogenization methods. It introduces a characteristic length for the microstructure in the case of a square array of circular 2-D conductive phases embedded in a dielectric matrix. In this paper, a method to identify this length parameter is proposed for random microstructures.

[1]  G. Milton The Theory of Composites , 2002 .

[2]  L. Daniel,et al.  A Note on the Effective Magnetic Permeability of Polycrystals , 2007, IEEE Transactions on Magnetics.

[3]  S. Torquato Random Heterogeneous Materials , 2002 .

[4]  J. Drewniak,et al.  Modeling of Shielding Composite Materials and Structures for Microwave Frequencies , 2009 .

[5]  M. S. Sarto Hybrid MFIE/FDTD analysis of the shielding effectiveness of a composite enclosure excited by a transient plane wave , 2000 .

[6]  C. Buccella Two-dimensional analysis of composite structures by the finite-difference time-domain method adopting scaling approach [EM shielding] , 2002 .

[7]  Lionel Pichon,et al.  Effective Permittivity of Shielding Composite Materials for Microwave Frequencies , 2013, IEEE Transactions on Electromagnetic Compatibility.

[8]  M. S. Sarto,et al.  Synthesis, Modeling, and Experimental Characterization of Graphite Nanoplatelet-Based Composites for EMC Applications , 2012, IEEE Transactions on Electromagnetic Compatibility.

[9]  A. Massarini,et al.  Transform method for calculating low-frequency shielding effectiveness of planar linear multilayered shields , 2000 .

[10]  T. Bretheau,et al.  Homogénéisation en mécanique des matériaux, Tome 1 : Matériaux aléatoires élastiques et milieux périodiques , 2001 .

[11]  M. Chiampi,et al.  Numerical analysis of magnetic shielding efficiency of multilayered screens , 2004, IEEE Transactions on Magnetics.

[12]  R. W. Schwartz,et al.  A Maxwell Garnett Model for Dielectric Mixtures Containing Conducting Particles at Optical Frequencies , 2006 .

[13]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[14]  Edward F. Kuester,et al.  Comparison of approximations for effective parameters of artificial dielectrics , 1990 .