Self-assembled three-dimensional epitaxial ionic fluorite Gd2Zr2O7 nanorods on (001) LaAlO3

Self-organized, three-dimensional (3D), coherent fluorite Gd2Zr2O7 nanorods were synthesized with pulsed-laser ablation. Transmission electron microscopy studies reveal that the 3D nanorods are epitaxially grown on (001) LaAlO3 with (001)GZO‖(001)LAO, [110]GZO‖[100]LAO and [11¯0]GZO‖[010]LAO. The nanorods have in-plane dimensions of about 20–35 nm, and their length can extend for the entire film thickness. The 3D nanorods have a vertical prism shape with side surfaces exhibiting a serrated morphology composed of {111} planes. The formation of such self-organized nanorods is consistent with a preferential growth mechanism and surface energy minimization considerations.

[1]  N. Padture,et al.  Low‐Thermal‐Conductivity Rare‐Earth Zirconates for Potential Thermal‐Barrier‐Coating Applications , 2004 .

[2]  K. I. Gnanasekar,et al.  Self-Assembly of Highly Epitaxial (La,Sr)MnO3 Nanorods on (001) LaAlO3 , 2004 .

[3]  K. I. Gnanasekar,et al.  Composition and Growth-Temperature Effect on the Microstructure of Epitaxial La_1−x Sr_x MnO_3 (x = 0, 0.2) Thin Films on (001) LaAlO_3 , 2003 .

[4]  T. Saitoh,et al.  TEM observations of Gd2Zr2O7 films formed by the ion-beam-assisted deposition method on an Ni-based alloy , 2003 .

[5]  N. Padture,et al.  Thermal conductivity of ceramics in the ZrO_2-GdO_1.5system , 2002 .

[6]  K. I. Gnanasekar,et al.  Self-organized, ordered array of coherent orthogonal column nanostructures in epitaxial La0.8Sr0.2MnO3 thin films , 2002 .

[7]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[8]  E. Muccillo,et al.  Preparation of Gd2O3-doped ZrO2 by polymeric precursor techniques , 2002 .

[9]  K. Eberl,et al.  Mesoscopic fast ion conduction in nanometre-scale planar heterostructures , 2000, Nature.

[10]  A. Chadwick Nanotechnology: Solid progress in ion conduction , 2000, Nature.

[11]  Hartmann,et al.  Radiation tolerance of complex oxides , 2000, Science.

[12]  John B. Goodenough,et al.  Ceramic technology: Oxide-ion conductors by design , 2000, Nature.

[13]  Yvon Laligant,et al.  Designing fast oxide-ion conductors based on La2Mo2O 9 , 2000, Nature.

[14]  William J. Weber,et al.  Radiation stability of gadolinium zirconate: A waste form for plutonium disposition , 1999 .

[15]  H. Tuller Solid State Electrochemical Systems–Opportunities for Nanofabricated or Nanostructured Materials , 1997 .

[16]  M. Krishnaiah,et al.  Investigation of the thermal conductivity of selected compounds of gadolinium and lanthanum , 1997 .

[17]  Albert-László Barabási,et al.  Self-assembled island formation in heteroepitaxial growth , 1997, cond-mat/9703252.

[18]  Chen,et al.  Structural Transition in Large-Lattice-Mismatch Heteroepitaxy. , 1996, Physical review letters.

[19]  N. Ledentsov,et al.  Spontaneous ordering of arrays of coherent strained islands. , 1995, Physical review letters.

[20]  A. Sleight,et al.  Chapter 107 Rare earth pyrochlores , 1993 .

[21]  H. Tuller,et al.  Evaluation of the Gd2(ZrxTi1 - x)2O7 pyrochlore system as an oxygen gas sensor , 1990 .

[22]  M. Verkerk,et al.  STRUCTURE AND CONDUCTIVITY OF PYROCHLORE AND FLUORITE TYPE SOLID SOLUTIONS , 1981 .

[23]  W. G. Perdok,et al.  On the relations between structure and morphology of crystals. I , 1955 .