What we can do and what we cannot do with fMRI

Functional magnetic resonance imaging (fMRI) is currently the mainstay of neuroimaging in cognitive neuroscience. Advances in scanner technology, image acquisition protocols, experimental design, and analysis methods promise to push forward fMRI from mere cartography to the true study of brain organization. However, fundamental questions concerning the interpretation of fMRI data abound, as the conclusions drawn often ignore the actual limitations of the methodology. Here I give an overview of the current state of fMRI, and draw on neuroimaging and physiological data to present the current understanding of the haemodynamic signals and the constraints they impose on neuroimaging data interpretation.

[1]  C. D. Coryell,et al.  The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin , 1936, Proceedings of the National Academy of Sciences.

[2]  R. LorentedeNo Analysis of the distribution of the action currents of nerve in volume conductors. , 1947 .

[3]  S OCHS,et al.  Cerebral impedance changes after circulatory arrest. , 1956, The American journal of physiology.

[4]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[5]  J. B. Ranck,et al.  Analysis of specific impedance of rabbit cerebral cortex. , 1963, Experimental neurology.

[6]  D. Kernell,et al.  Delayed depolarization and the repetitive response to intracellular stimulation of mammalian motoneurones , 1963, The Journal of physiology.

[7]  A. van Harreveld,et al.  Specific impedance of rabbit's cortical tissue. , 1963, The American journal of physiology.

[8]  P. Nicholson,et al.  Specific impedance of cerebral white matter. , 1965, Experimental neurology.

[9]  B. Cragg The density of synapses and neurones in the motor and visual areas of the cerebral cortex. , 1967, Journal of anatomy.

[10]  D. Robinson,et al.  The electrical properties of metal microelectrodes , 1968 .

[11]  Clifford D. Ferris,et al.  Four‐Electrode Null Techniques for Impedance Measurement with High Resolution , 1968 .

[12]  R Elul The physiological interpretation of amplitude histograms of the EEG. , 1969, Electroencephalography and clinical neurophysiology.

[13]  F. Donders On the speed of mental processes. , 1969, Acta psychologica.

[14]  Saul Sternberg,et al.  The discovery of processing stages: Extensions of Donders' method , 1969 .

[15]  F. Grover,et al.  Correlation of cell size with amplitude of background fast activity in specific brain nuclei. , 1970, Journal of neurophysiology.

[16]  A L Towe,et al.  Extracellular microelectrode sampling bias. , 1970, Experimental neurology.

[17]  R. Llinás,et al.  Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes. , 1971, Journal of neurophysiology.

[18]  R. Elul The genesis of the EEG. , 1971, International review of neurobiology.

[19]  J. Stone,et al.  Sampling properties of microelectrodes assessed in the cat's retina. , 1973, Journal of neurophysiology.

[20]  D. Lindsley,et al.  Chapter 1 – The Electroencephalogram: Autonomous Electrical Activity in Man and Animals , 1974 .

[21]  R. Jindra Mass action in the nervous system W. J. Freeman, Academic Press, New York (1975), 489 pp., (hard covers). $34.50 , 1976, Neuroscience.

[22]  J. A. Hobson,et al.  Neuronal activity during the sleep-waking cycle , 1976, Progress in Neurobiology.

[23]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[24]  E. Basar EEG-brain dynamics: Relation between EEG and Brain evoked potentials , 1980 .

[25]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[26]  H. Vaughan,et al.  Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume-conducted potentials , 1980, Journal of Neuroscience Methods.

[27]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[28]  H. Duvernoy,et al.  Cortical blood vessels of the human brain , 1981, Brain Research Bulletin.

[29]  G. Radda,et al.  Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. , 1982, Biochimica et biophysica acta.

[30]  Y Harada,et al.  The calcium component of the action potential in spinal motoneurones of the rat. , 1983, The Journal of physiology.

[31]  T L Babb,et al.  Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  B. Gustafsson,et al.  Afterpotentials and transduction properties in different types of central neurones. , 1984, Archives italiennes de biologie.

[33]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[34]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[35]  R. Nudo,et al.  Stimulation‐induced [14C]2‐deoxyglucose labeling of synaptic activity in the central auditory system , 1986, The Journal of comparative neurology.

[36]  K. Walton,et al.  Ionic mechanisms underlying the firing properties of rat neonatal motoneurons studied in vitro , 1986, Neuroscience.

[37]  J. B. Kneeland,et al.  Planar-pair local coils for high-resolution magnetic resonance imaging, particularly of the temporomandibular joint. , 1986, Medical physics.

[38]  M. Raichle,et al.  Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[39]  U. Mitzdorf Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. , 1987, The International journal of neuroscience.

[40]  M. Mintun,et al.  Nonoxidative glucose consumption during focal physiologic neural activity. , 1988, Science.

[41]  G. Buzsáki,et al.  Nucleus basalis and thalamic control of neocortical activity in the freely moving rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[43]  M. Posner,et al.  Positron Emission Tomographic Studies of the Processing of Singe Words , 1989, Journal of Cognitive Neuroscience.

[44]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[45]  M Corbetta,et al.  Attentional modulation of neural processing of shape, color, and velocity in humans. , 1990, Science.

[46]  S. Ogawa,et al.  Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation , 1990, Magnetic resonance in medicine.

[47]  B. Rosen,et al.  Susceptibility contrast imaging of cerebral blood volume: Human experience , 1991, Magnetic resonance in medicine.

[48]  B. Rosen,et al.  Functional mapping of the human visual cortex by magnetic resonance imaging. , 1991, Science.

[49]  H Preißl,et al.  Dynamics of activity and connectivity in physiological neuronal networks , 1991 .

[50]  S M Wright,et al.  Arrays of mutually coupled receiver coils: Theory and application , 1991, Magnetic resonance in medicine.

[51]  R. Turner,et al.  Echo‐planar time course MRI of cat brain oxygenation changes , 1991, Magnetic resonance in medicine.

[52]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[53]  M. Steriade Alertness, Quiet Sleep, Dreaming , 1991 .

[54]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[55]  D. S. Williams,et al.  Magnetic resonance imaging of perfusion using spin inversion of arterial water. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. S. Hinks,et al.  Time course EPI of human brain function during task activation , 1992, Magnetic resonance in medicine.

[58]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[59]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[60]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[61]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[62]  E. Tanaka,et al.  Ionic mechanisms underlying the depolarizing and hyperpolarizing afterpotentials of single spike in guinea-pig cingulate cortical neurons , 1993, Neuroscience.

[63]  B. Rosen,et al.  Microscopic susceptibility variation and transverse relaxation: Theory and experiment , 1994, Magnetic resonance in medicine.

[64]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  J H Duyn,et al.  Inflow versus deoxyhemoglobin effects in bold functional MRI using gradient echoes at 1.5 T , 1994, NMR in biomedicine.

[66]  D. Johnston,et al.  Foundations of Cellular Neurophysiology , 1994 .

[67]  S. H. Chandler,et al.  Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro. , 1994, Journal of neurophysiology.

[68]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[69]  M. Jüptner,et al.  Review: Does Measurement of Regional Cerebral Blood Flow Reflect Synaptic Activity?—Implications for PET and fMRI , 1995, NeuroImage.

[70]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[71]  M. Hasselmo Neuromodulation and cortical function: modeling the physiological basis of behavior , 1995, Behavioural Brain Research.

[72]  B. McNaughton,et al.  Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex , 1995, Journal of Neuroscience Methods.

[73]  S Ullman,et al.  Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. , 1995, Cerebral cortex.

[74]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[75]  B R Rosen,et al.  Mr contrast due to intravascular magnetic susceptibility perturbations , 1995, Magnetic resonance in medicine.

[76]  A. Schüz,et al.  Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey. , 1995, Journal fur Hirnforschung.

[77]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[78]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[79]  K. Fuxe,et al.  Intercellular communication in the brain: Wiring versus volume transmission , 1995, Neuroscience.

[80]  Karl J. Friston,et al.  The Trouble with Cognitive Subtraction , 1996, NeuroImage.

[81]  S E Petersen,et al.  Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[82]  D. Poeppel A Critical Review of PET Studies of Phonological Processing , 1996, Brain and Language.

[83]  W. Manning,et al.  Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays , 1997, Magnetic resonance in medicine.

[84]  Seong‐gi Kim Cmrr,et al.  Comparison of blood oxygenattion and cerebral blood flow effect in fMRI: Estimation of relative oxygen consumption change , 1997, Magnetic resonance in medicine.

[85]  G Buzsáki,et al.  Cellular–Synaptic Generation of Sleep Spindles, Spike-and-Wave Discharges, and Evoked Thalamocortical Responses in the Neocortex of the Rat , 1997, The Journal of Neuroscience.

[86]  O Hidaka,et al.  Role of calcium conductances on spike afterpotentials in rat trigeminal motoneurons. , 1997, Journal of neurophysiology.

[87]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[88]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[89]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[90]  J. Voyvodic,et al.  High‐resolution echo‐planar fMRI of human visual cortex at 3.0 tesla , 1997, NMR in biomedicine.

[91]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[92]  P. Bandettini,et al.  Echo-planar imaging : theory, technique and application , 1998 .

[93]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[94]  Ravi S. Menon,et al.  On the characteristics of functional magnetic resonance imaging of the brain. , 1998, Annual review of biophysics and biomolecular structure.

[95]  C. Mathiesen,et al.  Modification of activity‐dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex , 1998, The Journal of physiology.

[96]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[97]  Frans A. J. Verstraten,et al.  The Motion Aftereffect:A Modern Perspective , 1998 .

[98]  R. Eckhorn,et al.  Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG , 1999, Experimental Brain Research.

[99]  G. Buzsáki,et al.  Interdependence of Multiple Theta Generators in the Hippocampus: a Partial Coherence Analysis , 1999, The Journal of Neuroscience.

[100]  K. Fuxe,et al.  Volume transmission in the CNS and its relevance for neuropsychopharmacology. , 1999, Trends in pharmacological sciences.

[101]  P. Lauterbur,et al.  Principles of magnetic resonance imaging : a signal processing perspective , 1999 .

[102]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[103]  L. Garey Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd edn. By V. BRAITENBERG and A. SCHÜZ. (Pp. xiii+249; 90 figures; ISBN 3 540 63816 4). Berlin: Springer. 1998. , 1999 .

[104]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[105]  J. Csicsvari,et al.  Intracellular features predicted by extracellular recordings in the hippocampus in vivo. , 2000, Journal of neurophysiology.

[106]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[107]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[108]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[109]  D. Heeger,et al.  Neuronal Basis of the Motion Aftereffect Reconsidered , 2001, Neuron.

[110]  Dae-Shik Kim,et al.  Localized cerebral blood flow response at submillimeter columnar resolution , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Paul M. Matthews,et al.  Functional magnetic resonance imaging: An introduction to methods , 2001 .

[112]  A. Shmuel,et al.  Sustained Negative BOLD, Blood Flow and Oxygen Consumption Response and Its Coupling to the Positive Response in the Human Brain , 2002, Neuron.

[113]  Robert Turner,et al.  How Much Cortex Can a Vein Drain? Downstream Dilution of Activation-Related Cerebral Blood Oxygenation Changes , 2002, NeuroImage.

[114]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[115]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[116]  H. Markram,et al.  Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. , 2002, Cerebral cortex.

[117]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[118]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[119]  N. Logothetis,et al.  Visual competition , 2002, Nature Reviews Neuroscience.

[120]  S. Rossitti Introduction to Functional Magnetic Resonance Imaging, Principles and Techniques , 2002 .

[121]  J. Hornung,et al.  The human raphe nuclei and the serotonergic system , 2003, Journal of Chemical Neuroanatomy.

[122]  David A. McCormick,et al.  Balanced Recurrent Excitation and Inhibition in Local Cortical Networks , 2003 .

[123]  K. Uğurbil,et al.  Ultrahigh field magnetic resonance imaging and spectroscopy. , 2003, Magnetic resonance imaging.

[124]  Richard N. Henson,et al.  Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques , 2002 .

[125]  Juha Voipio,et al.  Cation–chloride co-transporters in neuronal communication, development and trauma , 2003, Trends in Neurosciences.

[126]  N. Logothetis The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal , 2003, The Journal of Neuroscience.

[127]  Tamás F Freund,et al.  Interneuron Diversity series: Rhythm and mood in perisomatic inhibition , 2003, Trends in Neurosciences.

[128]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[129]  G. Buzsáki,et al.  Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons , 2004, Trends in Neurosciences.

[130]  Robin M Heidemann,et al.  SMASH, SENSE, PILS, GRAPPA: How to Choose the Optimal Method , 2004, Topics in magnetic resonance imaging : TMRI.

[131]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[132]  G. Bruce Pike,et al.  Hemodynamic and metabolic responses to neuronal inhibition , 2004, NeuroImage.

[133]  Xiao-Jing Wang,et al.  Effects of Neuromodulation in a Cortical Network Model of Object Working Memory Dominated by Recurrent Inhibition , 2004, Journal of Computational Neuroscience.

[134]  A. O. Rodríguez,et al.  Principles of magnetic resonance imaging , 2004 .

[135]  LM Hurley,et al.  A matter of focus: monoaminergic modulation of stimulus coding in mammalian sensory networks , 2004, Current Opinion in Neurobiology.

[136]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[137]  S Zeki,et al.  Thirty years of a very special visual area, Area V5 , 2004, The Journal of physiology.

[138]  R. Eckhorn,et al.  Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry. , 2004, Cerebral cortex.

[139]  Janos P. Kiss,et al.  Nonsynaptic communication in the central nervous system , 2004, Neurochemistry International.

[140]  Christoph Kayser,et al.  Stimulus locking and feature selectivity prevail in complementary frequency ranges of V1 local field potentials , 2004, The European journal of neuroscience.

[141]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[142]  D. Attwell,et al.  Neuroenergetics and the kinetic design of excitatory synapses , 2005, Nature Reviews Neuroscience.

[143]  Fuqiang Zhao,et al.  Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution , 2005, NeuroImage.

[144]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[145]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[146]  Roel H. R. Deckers,et al.  Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla , 2005, Magnetic resonance in medicine.

[147]  R. Guillery,et al.  Exploring the Thalamus and Its Role in Cortical Function , 2005 .

[148]  N. Logothetis,et al.  Local field potential reflects perceptual suppression in monkey visual cortex , 2006, Proceedings of the National Academy of Sciences.

[149]  R. Segev,et al.  How silent is the brain: is there a “dark matter” problem in neuroscience? , 2006, Journal of Comparative Physiology A.

[150]  E. Hamel Perivascular nerves and the regulation of cerebrovascular tone. , 2006, Journal of applied physiology.

[151]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[152]  N. Logothetis,et al.  Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 , 2006, Nature Neuroscience.

[153]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[154]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[155]  W. Newsome,et al.  Local Field Potential in Cortical Area MT: Stimulus Tuning and Behavioral Correlations , 2006, The Journal of Neuroscience.

[156]  G. Boynton,et al.  Adaptation: from single cells to BOLD signals , 2006, Trends in Neurosciences.

[157]  D. Attwell,et al.  Bidirectional control of CNS capillary diameter by pericytes , 2006, Nature.

[158]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[159]  N. Logothetis,et al.  High-resolution fMRI of macaque V1. , 2007, Magnetic resonance imaging.

[160]  D. Kleinfeld,et al.  Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-Dependent Signal , 2007, The Journal of Neuroscience.

[161]  Denis Le Bihan,et al.  The ‘wet mind’: water and functional neuroimaging , 2007 .

[162]  N. Logothetis,et al.  In Vivo Measurement of Cortical Impedance Spectrum in Monkeys: Implications for Signal Propagation , 2007, Neuron.

[163]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[164]  R. Freeman,et al.  Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity , 2007, Nature Neuroscience.

[165]  G. Buzsáki,et al.  Inhibition and Brain Work , 2007, Neuron.

[166]  Essa Yacoub,et al.  Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla , 2007, NeuroImage.

[167]  Lawrence C. Sincich,et al.  Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex , 2007, The Journal of Neuroscience.

[168]  Arthur Gretton,et al.  Low-Frequency Local Field Potentials and Spikes in Primary Visual Cortex Convey Independent Visual Information , 2008, The Journal of Neuroscience.

[169]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[170]  Andreas Bartels,et al.  fMRI and its interpretations: an illustration on directional selectivity in area V5/MT , 2008, Trends in Neurosciences.

[171]  Nikos K. Logothetis,et al.  The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI , 2008, Proceedings of the National Academy of Sciences.

[172]  Johannes Reichold,et al.  The microvascular system of the striate and extrastriate visual cortex of the macaque. , 2008, Cerebral cortex.