Lie Symmetry Preservation by Finite Difference Schemes for the Burgers Equation

Invariant numerical schemes possess properties that may overcome the numerical properties of most of classical schemes. When they are constructed with moving frames, invariant schemes can present more stability and accuracy. The cornerstone is to select relevant moving frames. We present a new algorithmic process to do this. The construction of invariant schemes consists in parametrizing the scheme with constant coefficients. These coefficients are determined in order to satisfy a fixed order of accuracy and an equivariance condition. Numerical applications with the Burgers equation illustrate the high performances of the process.

[1]  Pierre Sagaut,et al.  LIE GROUP STUDY OF FINITE DIFFERENCE SCHEMES , 2007 .

[2]  G. Cicogna A Discussion on the Different Notions of Symmetry of Differential Equations , 2010, 1012.1935.

[3]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[4]  C. Budd,et al.  Geometric integration and its applications , 2003 .

[5]  A. Hamdouni,et al.  Invariant subgrid modelling in large-eddy simulation of heat convection turbulence , 2007 .

[6]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[7]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[8]  V. Dorodnitsyn,et al.  Symmetry-preserving difference schemes for some heat transfer equations , 1997, math/0402367.

[9]  Difference schemes with point symmetries and their numerical tests , 2006, math-ph/0602057.

[10]  W. Cabot,et al.  Group analysis, direct numerical simulation and modelling of a turbulent channel flow with streamwise rotation , 2006, Journal of Fluid Mechanics.

[11]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[12]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[13]  D. Levi,et al.  Continuous symmetries of difference equations , 2005, nlin/0502004.

[14]  Roman Kozlov,et al.  Lie group classification of second-order ordinary difference equations , 2000 .

[15]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[16]  B. Lindgren,et al.  Evaluation of scaling laws derived from Lie group symmetry methods in zero-pressure-gradient turbulent boundary layers , 2004, Journal of Fluid Mechanics.

[17]  M. Oberlack,et al.  Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier–Stokes equations , 2007 .

[18]  Pilwon Kim,et al.  Invariantization of numerical schemes using moving frames , 2007 .

[19]  Conservation laws of semidiscrete Hamiltonian equations , 2001 .

[20]  Y. Shokin Analysis of conservative properties of the difference schemes by the method of differential approximation , 1981 .

[21]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[22]  Chris Budd,et al.  Symmetry Based Numerical Methods for Partial Differential Equations , 1997 .

[23]  Vortices and invariant surfaces generated by symmetries for the 3D Navier–Stokes equations , 1999, math-ph/9912008.

[24]  P. Olver,et al.  Moving Coframes: I. A Practical Algorithm , 1998 .

[25]  Lie symmetries and exact solutions of first-order difference schemes , 2004, nlin/0402047.

[26]  Pilwon Kim,et al.  Invariantization of the Crank Nicolson method for Burgers’ equation , 2008 .

[27]  E. Hairer,et al.  Accurate long-term integration of dynamical systems , 1995 .

[28]  Peter J. Olver,et al.  Moving frames , 2003, J. Symb. Comput..

[29]  Aziz Hamdouni,et al.  A new construction for invariant numerical schemes using moving frames , 2010 .

[30]  E. Cartan La méthode du repère mobile, la théorie des groupes continus et les espaces généralisés , 1935 .

[31]  Brian E. Moore,et al.  Multi-symplectic integration methods for Hamiltonian PDEs , 2003, Future Gener. Comput. Syst..

[32]  Aziz Hamdouni,et al.  A class of subgrid-scale models preserving the symmetry group of Navier–Stokes equations , 2007 .

[33]  M. Oberlack A unified approach for symmetries in plane parallel turbulent shear flows , 2001, Journal of Fluid Mechanics.

[34]  Subgrid models preserving the symmetry group of the Navier–Stokes equations , 2005 .