Geometric Analysis of the Conformal Camera for Intermediate-Level Vision and Perisaccadic Perception

A binocular system developed by the author in terms of projective Fourier transform (PFT) of the conformal camera, which numerically integrates the head, eyes, and visual cortex, is used to process visual information during saccadic eye movements. Although we make three saccades per second at the eyeball's maximum speed of 700 deg/sec, our visual system accounts for these incisive eye movements to produce a stable percept of the world. This visual constancy is maintained by neuronal receptive field shifts in various retinotopically organized cortical areas prior to saccade onset, giving the brain access to visual information from the saccade's target before the eyes' arrival. It integrates visual information acquisition across saccades. Our modeling utilizes basic properties of PFT. First, PFT is computable by FFT in complex logarithmic coordinates that approximate the retinotopy. Second, a translation in retinotopic (logarithmic) coordinates, modeled by the shift property of the Fourier transform, remaps the presaccadic scene into a postsaccadic reference frame. It also accounts for the perisaccadic mislocalization observed by human subjects in laboratory experiments. Because our modeling involves cross-disciplinary areas of conformal geometry, abstract and computational harmonic analysis, computational vision, and visual neuroscience, we include the corresponding background material and elucidate how these different areas interwove in our modeling of primate perception. In particular, we present the physiological and behavioral facts underlying the neural processes related to our modeling. We also emphasize the conformal camera's geometry and discuss how it is uniquely useful in the intermediate-level vision computational aspects of natural scene understanding.

[1]  S Anstis,et al.  Picturing Peripheral Acuity , 1998, Perception.

[2]  Patricia E. Blosser,et al.  Principles of gestalt psychology and their application to teaching junior high school science , 1973 .

[3]  G D Field,et al.  Information processing in the primate retina: circuitry and coding. , 2007, Annual review of neuroscience.

[4]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[5]  C. Genovese,et al.  Remapping in human visual cortex. , 2007, Journal of neurophysiology.

[6]  Eric L. Schwartz,et al.  Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding , 1980, Vision Research.

[7]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[8]  Giorgio Bonmassar,et al.  Space-Variant Fourier Analysis: The Exponential Chirp Transform , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  V. Javier Traver,et al.  Entropy-Based Saliency Computation in Log-Polar Images , 2008, VISAPP.

[10]  H. Kennedy,et al.  Two Cortical Systems for Reaching in Central and Peripheral Vision , 2005, Neuron.

[12]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[13]  H. Basford,et al.  Optimal eye movement strategies in visual search , 2005 .

[14]  Rufin VanRullen A simple translation in cortical log-coordinates may account for the pattern of saccadic localization errors , 2004, Biological cybernetics.

[15]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[16]  Jacek Turski,et al.  Harmonic analysis for cognitive vision: perisaccadic perception , 2009, Electronic Imaging.

[17]  Giulio Sandini,et al.  Foveated active tracking with redundant 2D motion parameters , 2002, Robotics Auton. Syst..

[18]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[19]  Frank Bremmer,et al.  Neural Correlates of Visual Localization and Perisaccadic Mislocalization , 2003, Neuron.

[20]  J. Gottlieb From a different point of view: extrastriate cortex integrates information across saccades. Focus on "Remapping in human visual cortex". , 2007, Journal of neurophysiology.

[21]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[22]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[23]  Giulio Sandini,et al.  Anthropomorphic Visual Sensors , 2005 .

[24]  Jeanette G. Grasselli,et al.  The Analytical approach , 1983 .

[25]  Jacek Turski Projective Fourier analysis for patterns , 2000, Pattern Recognit..

[26]  M Leyton,et al.  A theory of information structure. I. General principles , 1986 .

[27]  K. Koffka Principles Of Gestalt Psychology , 1936 .

[28]  H. Blum Biological shape and visual science (part I) , 1973 .

[29]  M Concetta Morrone,et al.  Saccadic eye movements cause compression of time as well as space , 2005, Nature Neuroscience.

[30]  D. Heeger,et al.  Center-surround interactions in foveal and peripheral vision , 2000, Vision Research.

[31]  J. Turski Harmonic analysis on SL(2, C ) and proje , 1998 .

[32]  Jacek Turski,et al.  Computational harmonic analysis for human and robotic vision systems , 2006, Neurocomputing.

[33]  S. Ullman High-Level Vision: Object Recognition and Visual Cognition , 1996 .

[34]  Markus Lappe,et al.  The Peri-Saccadic Perception of Objects and Space , 2008, PLoS Comput. Biol..

[35]  Jacek Turski Projective Fourier analysis in computer vision: theory and computer simulations , 1997, Optics & Photonics.

[36]  A. Berthoz,et al.  From brainstem to cortex: Computational models of saccade generation circuitry , 2005, Progress in Neurobiology.

[37]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[38]  Markus Lappe,et al.  Mislocalization of Perceived Saccade Target Position Induced by Perisaccadic Visual Stimulation , 2006, The Journal of Neuroscience.

[39]  David Burr,et al.  Time Perception: Space–Time in the Brain , 2006, Current Biology.

[40]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Marcus Kaiser,et al.  Perisaccadic Mislocalization Orthogonal to Saccade Direction , 2004, Neuron.

[42]  Bart Krekelberg,et al.  Postsaccadic visual references generate presaccadic compression of space , 2000, Nature.

[43]  O. Grüsser,et al.  On the history of the ideas of efference copy and reafference. , 1995, Clio medica.

[44]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[45]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[46]  Jacek Turski Geometric Fourier Analysis of the Conformal Camera for Active Vision , 2004, SIAM Rev..

[47]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[48]  I. Derakhshan How do the eyes move together? New understandings help explain eye deviations in patients with stroke , 2005, Canadian Medical Association Journal.

[49]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[50]  F. Hamker,et al.  About the influence of post-saccadic mechanisms for visual stability on peri-saccadic compression of object location. , 2008, Journal of vision.

[51]  Giulio Sandini,et al.  Disparity Estimation on Log-Polar Images and Vergence Control , 2001, Comput. Vis. Image Underst..

[52]  Patrick Cavanagh,et al.  Clocking saccadic remapping , 2010 .

[53]  Michal Lavidor,et al.  The nature of foveal representation , 2004, Nature Reviews Neuroscience.

[54]  Heiko Neumann,et al.  Combined space-variant maps for optical-flow-based navigation , 2000, Biological Cybernetics.

[55]  D. Burr,et al.  Keeping vision stable: rapid updating of spatiotopic receptive fields may cause relativistic-like effects , 2010 .

[56]  Matteo Carandini,et al.  Two Distinct Mechanisms of Suppression in Human Vision , 2005, The Journal of Neuroscience.

[57]  Jesús Angulo,et al.  Polar Modelling And Segmentation Of Genomic Microarray Spots Using Mathematical Morphology , 2011 .

[58]  Michael Leyton,et al.  A theory of information structure II: A theory of perceptual organization Journal of Mathematical Ps , 1986 .

[59]  D. Melcher Predictive remapping of visual features precedes saccadic eye movements , 2007, Nature Neuroscience.

[60]  P. Glimcher Making choices: the neurophysiology of visual-saccadic decision making , 2001, Trends in Neurosciences.

[61]  R. Herb Harish-Chandra and his work , 1991 .

[62]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[63]  Michael Balzer,et al.  Complex Logarithmic Views for Small Details in Large Contexts , 2006, IEEE Transactions on Visualization and Computer Graphics.

[64]  B. Julesz,et al.  Perceptual sensitivity maps within globally defined visual shapes , 1994, Nature.

[65]  Larry S. Shapiro,et al.  Affine Analysis of Image Sequences: Contents , 1995 .

[66]  J. Turski Geometric Fourier Analysis for Computational Vision , 2005 .

[67]  Clara D. Martin,et al.  ERP evidence for the split fovea theory , 2007, Brain Research.

[68]  R. J. Plymen,et al.  REPRESENTATION THEORY OF SEMISIMPLE GROUPS: An Overview Based on Examples , 1989 .

[69]  Alessandro Treves,et al.  Is the world full of circles? , 2002, Journal of vision.