On time-symmetry in cellular automata
暂无分享,去创建一个
[1] Serafino Amoroso,et al. Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 1972, J. Comput. Syst. Sci..
[2] Nicolas Ollinger. Universalities in cellular automata a (short) survey , 2008, JAC.
[3] J. Kari. Representation of reversible cellular automata with block permutations , 1996, Mathematical systems theory.
[4] Robert L. Berger. The undecidability of the domino problem , 1966 .
[5] Jarkko Kari,et al. Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..
[6] Jarkko Kari,et al. Periodicity and Immortality in Reversible Computing , 2008, MFCS.
[7] Jarkko Kari,et al. Reversible Cellular Automata , 2005, Developments in Language Theory.
[8] Eric Goles Ch.,et al. Complexity of Langton's ant , 2002, Discret. Appl. Math..
[9] Christopher G. Langton,et al. Studying artificial life with cellular automata , 1986 .
[10] Nicolas Ollinger,et al. Bulking II: Classifications of cellular automata , 2010, Theor. Comput. Sci..
[11] N. Margolus,et al. Invertible cellular automata: a review , 1991 .
[12] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.
[13] J. Lamb,et al. Time-reversal symmetry in dynamical systems: a survey , 1998 .
[14] Klaus Sutner. Classifying circular cellular automata , 1991 .
[15] E. Cohen,et al. New types of diffusion in lattice gas cellular automata , 1993 .
[16] K. Morita,et al. Computation universality of one-dimensional reversible (injective) cellular automata , 1989 .
[17] Norman Margolus,et al. Physics and Computation , 1987 .
[18] S. J. Lee,et al. Noise in optical mixing , 1969 .