An effective Parallel Multistart Tabu Search for Quadratic Assignment Problem on CUDA platform

NVidia's powerful GPU hardware and CUDA platform enables the design of very fast parallel algorithms. Relatively little research has been done so far on GPU implementations of algorithms for computationally demanding discrete optimisation problems. In this paper, the well-known NP-hard Quadratic Assignment Problem (QAP) is considered. Detailed analysis of parallelisation possibilities, memory organisation and access patterns, enables the implementation of fast and effective heuristics for QAP on the GPU - the Parallel Multistart Tabu Search (PMTS). Computational experiments show that PMTS is capable of providing good quality (often optimal or the best known) solutions in a short time, and even better quality solutions in longer runs. PMTS runs up to 420x faster than a single-core counterpart, or 70x faster than a parallel CPU implementation on a high-end six-core CPU.

[1]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[2]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[3]  Adam Janiak,et al.  Tabu Search on GPU , 2008, J. Univers. Comput. Sci..

[4]  David Connolly An improved annealing scheme for the QAP , 1990 .

[5]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[8]  F. Rendl,et al.  A thermodynamically motivated simulation procedure for combinatorial optimization problems , 1984 .

[9]  John W. Dickey,et al.  Campus building arrangement using topaz , 1972 .

[10]  A. N. Elshafei,et al.  Hospital Layout as a Quadratic Assignment Problem , 1977 .

[11]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[12]  Gilbert Laporte,et al.  A Combinatorial Optimization Problem Arising in Dartboard Design , 1991 .

[13]  Leon Steinberg,et al.  The Backboard Wiring Problem: A Placement Algorithm , 1961 .

[14]  Fred W. Glover,et al.  Multistart Tabu Search and Diversification Strategies for the Quadratic Assignment Problem , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[15]  Michal Czapinski,et al.  Tabu Search with two approaches to parallel flowshop evaluation on CUDA platform , 2011, J. Parallel Distributed Comput..

[16]  Kurt M. Anstreicher,et al.  The Steinberg Wiring Problem , 2004, The Sharpest Cut.

[17]  Weihang Zhu,et al.  SIMD tabu search for the quadratic assignment problem with graphics hardware acceleration , 2010 .

[18]  V. Cung,et al.  A scatter search based approach for the quadratic assignment problem , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[19]  Jakob Krarup,et al.  Computer-aided layout design , 1978 .

[20]  Nair Maria Maia de Abreu,et al.  A survey for the quadratic assignment problem , 2007, Eur. J. Oper. Res..

[21]  Sven Rahmann,et al.  Microarray Layout as Quadratic Assignment Problem , 2006, German Conference on Bioinformatics.

[22]  Nouredine Melab,et al.  Parallel Local Search on GPU , 2009 .

[23]  Éric D. Taillard,et al.  Robust taboo search for the quadratic assignment problem , 1991, Parallel Comput..

[24]  Zvi Drezner,et al.  A New Genetic Algorithm for the Quadratic Assignment Problem , 2003, INFORMS J. Comput..

[25]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[26]  M Dorigo,et al.  Ant colonies for the quadratic assignment problem , 1999, J. Oper. Res. Soc..

[27]  Thomas Stützle,et al.  ACO algorithms for the quadratic assignment problem , 1999 .

[28]  Thomas Stützle,et al.  Iterated local search for the quadratic assignment problem , 2006, Eur. J. Oper. Res..