Pab3d: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows

This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.

[1]  Karen Deere,et al.  Summary of Fluidic Thrust Vectoring Research at NASA Langley Research Center , 2003 .

[2]  Thomas B. Gatski,et al.  Predicting Turbulent Convective Heat Transfer in Fully Developed Duct Flows , 2001 .

[3]  Karen A. Deere,et al.  A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept , 2005 .

[4]  T Jones William,et al.  Aerodynamic Performance Predictions of Single and Twin Jet Afterbodies , 1995 .

[5]  Khaled S. Abdol-Hamid,et al.  Implementation of Algebraic Stress Models in a General 3-D Navier-Stokes Method (PAB3D) , 1995 .

[6]  B. Lakshmanan,et al.  Investigation of supersonic jet plumes using an improved two-equation turbulence model , 1994 .

[7]  J. M. Seiner,et al.  Advances in high speed jet aeroacoustics , 1984 .

[8]  Khaled S. Abdol-Hamid,et al.  Computational Investigation of Circular-to-Rectangular Transition Ducts , 1994 .

[9]  Paul Batten,et al.  LNS - An approach towards embedded LES , 2002 .

[10]  Christopher K. W. Tam,et al.  Computation of turbulent axisymmetric and nonaxisymmetric jet flows using the K-epsilon model , 1996 .

[11]  Karen A. Deere,et al.  Computational Study of Fluidic Thrust Vectoring using Separation Control in a Nozzle , 2003 .

[12]  J. M. Seiner,et al.  Aerodynamic aspects of shock containing jet plumes , 1980 .

[13]  Khaled S. Abdol-Hamid Development of three-dimensional code for the analysis of jet mixing problem. Part 1: Laminar solution , 1988 .

[14]  S. Paul Pao,et al.  Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D , 1996 .

[15]  W. Jones,et al.  The prediction of laminarization with a two-equation model of turbulence , 1972 .

[16]  J. M. Eggers,et al.  Velocity profiles and eddy viscosity distributions downstream of a Mach 2.22 nozzle exhausting to quiescent air , 1966 .

[17]  R Spalart Philippe,et al.  Young-Person''s Guide to Detached-Eddy Simulation Grids , 2001 .

[18]  Khaled S. Abdol-Hamid,et al.  Computational analysis of vented supersonic exhaust nozzles using a multiblock/multizone strategy , 1993 .

[19]  G. N. Abramovich The Theory of Turbulent Jets , 2003 .

[20]  C Asbury Scott,et al.  An Experimental and Computational Investigation of a Translating Throat Single Expansion-Ramp Nozzle , 1996 .

[21]  John R. Carlson,et al.  Commercial turbofan engine exhaust nozzle flow analyses , 1993 .

[22]  Sharath S. Girimaji,et al.  PANS Turbulence Model for Seamless Transition Between RANS and LES: Fixed-Point Analysis and Preliminary Results , 2003 .

[23]  H. Görtler,et al.  Berechnung von Aufgaben der freien Turbulenz auf Grund eines neuen Näherungsansatzes . , 1942 .

[24]  Khaled S. Abdol-Hamid,et al.  Application of Navier-Stokes code PAB3D with kappa-epsilon turbulence model to attached and separated flows , 1995 .

[25]  S. Girimaji Fully explicit and self-consistent algebraic Reynolds stress model , 1995 .

[26]  John R. Carlson,et al.  Prediction of static performance for single expansion ramp nozzles , 1993 .

[27]  Karen A. Deere,et al.  PAB3D Simulations of a Nozzle with Fluidic Injection for Yaw Thrust-Vector Control , 1998 .

[28]  William T. Jones,et al.  Computational Analysis of Drag Reduction Techniques for Afterbody/Nozzle/Empennage Configurations , 1991 .

[29]  S. Paul Pao,et al.  Temperature Corrected Turbulence Model for High Temperature Jet Flow , 2004 .

[30]  C Asbury Scott,et al.  Two-Dimensional Converging-Diverging Rippled Nozzles at Transonic Speeds , 1994 .

[31]  Alaa A. Elmiligui,et al.  Numerical Study of High-Temperature Jet Flow Using RANS/LES and PANS Formulations , 2005 .

[32]  Mortaza Mani,et al.  Hybrid Turbulence Models for Unsteady Simulation of Jet Flows , 2002 .

[33]  Sharath S. Girimaji,et al.  A Two-Stage Procedure Toward the Efficient Implementation of PANS and Other Hybrid Turbulence Models , 2004 .

[34]  R. So,et al.  An explicit algebraic heat-flux model for the temperature field , 1996 .

[35]  J. Carlson Applications of Algebraic Reynolds Stress Turbulence Models Part 2: Transonic Shock-Separated Afterbody , 1997 .

[36]  J. Lumley,et al.  A new Reynolds stress algebraic equation model , 1994 .

[37]  S. Dash,et al.  Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes. [predicting afterbody drag] , 1980 .

[38]  Russell H. Thomas,et al.  COMPUTATIONAL ANALYSIS OF A PYLON-CHEVRON CORE NOZZLE INTERACTION , 2001 .

[39]  Richard G. Wilmoth,et al.  Multiscale turbulence effects in underexpanded supersonic jets , 1987 .

[40]  K. Abdol-Hamid,et al.  Three-dimensional upwinding Navier-Stokes code with k-epsilon model for supersonic flows , 1991 .

[41]  Karen A. Deere,et al.  Computational Investigation of Fluidic Counterflow Thrust Vectoring , 1999 .

[42]  Craig A. Hunter,et al.  Numerical Investigation of Flow in an Overexpanded Nozzle with Porous Surfaces , 2006 .

[43]  Khaled S. Abdol-Hamid The application of 3D marching scheme for the prediction of supersonic free jets , 1989 .

[44]  Russell H. Thomas,et al.  Computational and Experimental Flow Field Analyses of Separate Flow Chevron Nozzles and Pylon Interaction , 2003 .

[45]  Robert H. Nichols,et al.  Evaluation of Hybrid RANS/LES Turbulence Models Using an LES Code , 2003 .

[46]  John M. Seiner,et al.  The effects of temperature on supersonic jet noise emission , 1992 .

[47]  Eugene S. Love,et al.  Experimental and Theoretical Studies of Axisymmetric Free Jets , 1959 .

[48]  Craig A. Hunter,et al.  Thrust Augmentation with Mixer/Ejector Systems , 2002 .

[49]  John R. Carlson,et al.  Application of Navier-Stokes Code PAB3D With k-c Turbulence Model to Attached and Separated Flows , 1995 .

[50]  Tsuguo Kondoh,et al.  A two-equation heat transfer model reflecting second-moment closures for wall and free turbulent flows , 1996 .

[51]  V. P. Maslov,et al.  The Prediction of Three-Dimensional Jet Flows for Noise Applications , 2002 .

[52]  Russell H. Thomas,et al.  Development of a Jet Noise Prediction Method for Installed Jet Configurations , 2003 .