A Variational Approach to the Macroscopic Electrodynamics of Anisotropic Hard Superconductors

We consider Bean’s critical state model for anisotropic superconductors. A variational problem solved by the quasi-static evolution of the internal magnetic field is obtained as the Γ-limit of functionals arising from Maxwell’s equations combined with a power law for the dissipation. Moreover, the quasi-static approximation of the internal electric field is recovered, using a first order necessary condition. If the sample is a long cylinder subjected to an axial uniform external field, the macroscopic electrodynamics is explicitly determined.

[1]  A. Bad'ia,et al.  Vector magnetic hysteresis of hard superconductors , 2002 .

[2]  Electric field in hard superconductors with arbitrary cross section and general critical current law , 2004, cond-mat/0403418.

[3]  A. Malusa,et al.  On a system of partial differential equations of Monge–Kantorovich type , 2007 .

[4]  K. Bhagwat,et al.  Critical state model with anisotropic critical current density , 2003 .

[5]  A. Garroni,et al.  Dielectric breakdown: optimal bounds , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  S. Jonathan Chapman,et al.  A Hierarchy of Models for Type-II Superconductors , 2000, SIAM Rev..

[7]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[8]  Minimal Model for the Topology of the Critical State in Hard Superconductors , 2003, cond-mat/0307018.

[9]  Louis Nirenberg,et al.  The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton‐Jacobi equations , 2003, math/0306122.

[10]  Benliang Li,et al.  A degenerate evolution system modeling bean's critical-state type-II superconductors , 2002 .

[11]  S. Goldberg,et al.  Curvature and Homology , 1962 .

[12]  John W. Barrett,et al.  Bean's critical-state model as the p → limit of an evolutionary p -Laplacian equation , 2000 .

[13]  C. P. Bean Magnetization of hard superconductors , 1962 .

[14]  Andrea Braides Γ-convergence for beginners , 2002 .

[15]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[16]  W. Wahl Estimating ∇u by div u and curl u , 1992 .

[17]  P. Cannarsa,et al.  Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .

[18]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[19]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[20]  G. Crasta,et al.  THE DISTANCE FUNCTION FROM THE BOUNDARY IN A MINKOWSKI SPACE , 2006, math/0612226.

[21]  Giuseppe Buttazzo,et al.  Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations , 1989 .

[22]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[23]  John W. Barrett,et al.  Sandpiles and Superconductors: Dual Variational Formulations for Critical-State Problems , 2006, Systems, Control, Modeling and Optimization.

[24]  Brandt,et al.  Electric field in superconductors with rectangular cross section. , 1995, Physical review. B, Condensed matter.