A Variational Approach to the Macroscopic Electrodynamics of Anisotropic Hard Superconductors
暂无分享,去创建一个
[1] A. Bad'ia,et al. Vector magnetic hysteresis of hard superconductors , 2002 .
[2] Electric field in hard superconductors with arbitrary cross section and general critical current law , 2004, cond-mat/0403418.
[3] A. Malusa,et al. On a system of partial differential equations of Monge–Kantorovich type , 2007 .
[4] K. Bhagwat,et al. Critical state model with anisotropic critical current density , 2003 .
[5] A. Garroni,et al. Dielectric breakdown: optimal bounds , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[6] S. Jonathan Chapman,et al. A Hierarchy of Models for Type-II Superconductors , 2000, SIAM Rev..
[7] M. Bardi,et al. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .
[8] Minimal Model for the Topology of the Critical State in Hard Superconductors , 2003, cond-mat/0307018.
[9] Louis Nirenberg,et al. The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton‐Jacobi equations , 2003, math/0306122.
[10] Benliang Li,et al. A degenerate evolution system modeling bean's critical-state type-II superconductors , 2002 .
[11] S. Goldberg,et al. Curvature and Homology , 1962 .
[12] John W. Barrett,et al. Bean's critical-state model as the p → limit of an evolutionary p -Laplacian equation , 2000 .
[13] C. P. Bean. Magnetization of hard superconductors , 1962 .
[14] Andrea Braides. Γ-convergence for beginners , 2002 .
[15] P. Lions. Generalized Solutions of Hamilton-Jacobi Equations , 1982 .
[16] W. Wahl. Estimating ∇u by div u and curl u , 1992 .
[17] P. Cannarsa,et al. Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .
[18] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[19] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[20] G. Crasta,et al. THE DISTANCE FUNCTION FROM THE BOUNDARY IN A MINKOWSKI SPACE , 2006, math/0612226.
[21] Giuseppe Buttazzo,et al. Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations , 1989 .
[22] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[23] John W. Barrett,et al. Sandpiles and Superconductors: Dual Variational Formulations for Critical-State Problems , 2006, Systems, Control, Modeling and Optimization.
[24] Brandt,et al. Electric field in superconductors with rectangular cross section. , 1995, Physical review. B, Condensed matter.