Neural nano-optics for high-quality thin lens imaging

[1]  Gordon Wetzstein,et al.  Inference in artificial intelligence with deep optics and photonics , 2020, Nature.

[2]  R. Athale,et al.  Potential Applications of Metamaterials to Computational Imaging , 2020 .

[3]  C. Chang-Hasnain,et al.  Octave bandwidth photonic fishnet-achromatic-metalens , 2020, Nature Communications.

[4]  Steven G. Johnson,et al.  End-to-end nanophotonic inverse design for imaging and polarimetry , 2020 .

[5]  Wolfgang Heidrich,et al.  Learning Rank-1 Diffractive Optics for Single-Shot High Dynamic Range Imaging , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  U. Levy,et al.  The advantages of metalenses over diffractive lenses , 2020, Nature Communications.

[7]  Yuan-Yuan Liu,et al.  DeblurGAN+: Revisiting blind motion deblurring using conditional adversarial networks , 2020, Signal Process..

[8]  Babak Hassibi,et al.  A Silicon Photonics Computational Lensless Active-Flat-Optics Imaging System , 2020, Scientific Reports.

[9]  Francesco Monticone,et al.  Focusing on Bandwidth: Achromatic Metalens Limits , 2020, 2020 Conference on Lasers and Electro-Optics (CLEO).

[10]  Andrei Faraon,et al.  Multifunctional 25D metastructures enabled by adjoint optimization , 2020, Optica.

[11]  Yifan Peng,et al.  Learned large field-of-view imaging with thin-plate optics , 2019, ACM Trans. Graph..

[12]  Hualiang Zhang,et al.  Single-layer Planar Metasurface Lens with >170° Field of View , 2019, Frontiers in Optics + Laser Science APS/DLS.

[13]  O. Miller,et al.  High-NA achromatic metalenses by inverse design. , 2019, Optics express.

[14]  A. Majumdar,et al.  Simultaneous Achromatic and Varifocal Imaging with Quartic Metasurfaces in the Visible , 2019, ACS Photonics.

[15]  N. Yu,et al.  Broadband achromatic dielectric metalenses , 2018, Light, science & applications.

[16]  W. T. Chen,et al.  A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures , 2018, Nature Communications.

[17]  Stephen P. Boyd,et al.  End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging , 2018, ACM Trans. Graph..

[18]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[19]  Arka Majumdar,et al.  Metasurface optics for full-color computational imaging , 2018, Science Advances.

[20]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[22]  Ari T Friberg,et al.  Electromagnetic diffraction theory of refractive axicon lenses. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  Seungyong Lee,et al.  Fast non-blind deconvolution via regularized residual networks with long/short skip-connections , 2017, 2017 IEEE International Conference on Computational Photography (ICCP).

[24]  Wei Ting Chen,et al.  Achromatic metalens over 60 nm bandwidth in the visible , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[25]  Seyedeh Mahsa Kamali,et al.  Controlling the sign of chromatic dispersion in diffractive optics , 2017, 1701.07178.

[26]  W. Heidrich,et al.  The diffractive achromat full spectrum computational imaging with diffractive optics , 2016, SIGGRAPH ASIA Virtual Reality meets Physical Reality.

[27]  Tal Ellenbogen,et al.  Composite functional metasurfaces for multispectral achromatic optics , 2016, Nature Communications.

[28]  Wolfgang Heidrich,et al.  Encoded diffractive optics for full-spectrum computational imaging , 2016, Scientific Reports.

[29]  Q. Gong,et al.  Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. , 2016, Nano letters.

[30]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[31]  Andrei Faraon,et al.  Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations , 2016, Nature Communications.

[32]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[33]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Wolfgang Heidrich,et al.  Computational imaging using lightweight diffractive-refractive optics. , 2015, Optics express.

[35]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[36]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[37]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[38]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[39]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[40]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[41]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[42]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[43]  Wolfgang Heidrich,et al.  High-quality computational imaging through simple lenses , 2013, TOGS.

[44]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[45]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[46]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[47]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[48]  Cordelia Schmid,et al.  Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search , 2008, ECCV.

[49]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[50]  José M. Bioucas-Dias,et al.  Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[51]  Stanley J. Reeves,et al.  Fast image restoration without boundary artifacts , 2005, IEEE Transactions on Image Processing.

[52]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[53]  N George,et al.  Electronic imaging using a logarithmic asphere. , 2001, Optics letters.

[54]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[55]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[56]  Federico Capasso,et al.  A broadband achromatic metalens for focusing and imaging in the visible , 2018, Nature Nanotechnology.

[57]  D. Stork,et al.  Optical, Mathematical, and Computational Foundations of Lensless Ultra-Miniature Diffractive Imagers and Sensors , 2015 .

[58]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .