Transverse Stark effect of electrons in a semiconducting quantum wire

We investigate the effect of an electric field applied tranversely to the axis of cylindrical symmetry of a cylindrical quantum wire on the ground-state energy of the electrons in the wire using an infinite confining potential well model. For low electric fields, we find a quadratic shift of the energy levels with the electric field; while for strong fields, the Stark shift of the ground-state energy increases almost linearly with the electric field. This increase is greater for wide wires, but for narrow wires, the Stark shift of the ground-state energy does not change much with the electric field. Also, at higher electric fields, the Stark shift of the ground-state energy increases with increasing wire radius. This will lead to the decrease of the effective bandgap of a semiconducting quantum wire with electric field. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)