Charge trapping by iodine ions in photorefractive Sn2P2S6 crystals.

Electron paramagnetic resonance (EPR) is used to establish the role of iodine as an electron trap in tin hypothiodiphosphate (Sn2P2S6) crystals. Iodine ions are unintentionally incorporated when the crystals are grown by the chemical-vapor-transport method with SnI4 as the transport agent. The Sn2P2S6 crystals consist of Sn2+ ions and (P2S6)4- anionic groups. During growth, an iodine ion replaces a phosphorus in a few of the anionic groups, thus forming (IPS6)4- molecular ions. Following an exposure at low temperature to 633 nm laser light, these (IPS6)4- ions trap an electron and convert to EPR-active (IPS6)5- groups with S = 1/2. A concentration near 1.1 × 1017 cm-3 is produced. The EPR spectrum from the (IPS6)5- ions has well-resolved structure resulting from large hyperfine interactions with the 127I and 31P nuclei. Analysis of the angular dependence of the spectrum gives principal values of 1.9795, 2.0123, and 2.0581 for the g matrix, 232 MHz, 263 MHz, and 663 MHz for the 127I hyperfine matrix, and 1507 MHz, 1803 MHz, and 1997 MHz for the 31P hyperfine matrix. Results from quantum-chemistry modeling (unrestricted Hartree-Fock/second-order Møller-Plesset perturbation theory) support the (IPS6)5- assignment for the EPR spectrum. The transient two-beam coupling gain can be improved in these photorefractive Sn2P2S6 crystals by better controlling the point defects that trap charge.

[1]  D. Mihailovic,et al.  Customization of Sn2P2S6 ferroelectrics by post-growth solid-state diffusion doping , 2020 .

[2]  A. Grabar,et al.  Near-infrared-sensitive photorefractive Sn2P2S6 crystals grown by the Bridgman method , 2020, Journal of Applied Physics.

[3]  A. Salazar,et al.  Phase diagram of ferroelectrics with tricritical and Lifshitz points at coupling between polar and antipolar fluctuations , 2019, 1912.13398.

[4]  Y. Tokura,et al.  Ultrafast spectroscopy of shift-current in ferroelectric semiconductor Sn2P2S6 , 2019, Applied Physics Letters.

[5]  E. M. Scherrer Optical and Electron Paramagnetic Resonance Characterization of Point Defects in Semiconductors , 2019 .

[6]  M. Bennati EPR Interactions - Hyperfine couplings. , 2017 .

[7]  Malgorzata Makowska-Janusik,et al.  New insight into strong correlated states realised in a ferroelectric and paraelectric chalcogenide Sn2P2S6 crystal , 2017 .

[8]  D. Evans,et al.  Temporal dynamics of two-beam coupling and the origin of compensation photorefractive gratings in Sn_2P_2S_6:Sb , 2017 .

[9]  D. Evans,et al.  Hyperbolic decay of photo-created Sb2+ ions in Sn2P2S6:Sb crystals detected with electron paramagnetic resonance , 2017 .

[10]  A. Priimagi,et al.  Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths , 2017, Journal of Molecular Modeling.

[11]  D. Evans,et al.  Dual role of Sb ions as electron traps and hole traps in photorefractive Sn 2 P 2 S 6 crystals , 2016 .

[12]  I. Biaggio,et al.  Optical determination of the charge carrier mobility in Sn2P2S6 , 2016 .

[13]  D. Evans,et al.  Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap , 2016 .

[14]  A. Est Continuous-Wave EPR , 2016 .

[15]  D. Evans,et al.  Light induced absorption and optical sensitizing of Sn2P2S6:Sb , 2015 .

[16]  D. Evans,et al.  Sulfur vacancies in photorefractive Sn2P2S6 crystals , 2014 .

[17]  D. Evans,et al.  Intrinsic small polarons (Sn3+ ions) in photorefractive Sn2P2S6 crystals , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  J. Banys,et al.  Electronic Structure and Phase Transition in Ferroelectic Sn2P2S6 Crystal , 2012, International journal of molecular sciences.

[19]  D. Evans,et al.  Photoinduced EPR study of Sb2+ions in photorefractive Sn2P2S6crystals , 2012 .

[20]  A. Manivannan,et al.  Oxygen vacancies adjacent to Cu2+ ions in TiO2 (rutile) crystals , 2011 .

[21]  D. Evans,et al.  Secondary photorefractive centers in Sn2P2S6:Sb crystals. , 2011, Optics letters.

[22]  O. Poleshchuk,et al.  Comparative analysis of a full-electron basis set and pseudopotential for the iodine atom in DFT quantum-chemical calculations of iodine-containing compounds , 2008 .

[23]  D. Strauch,et al.  Ferroelectricity, nonlinear dynamics, and relaxation effects in monoclinic Sn2P2S6. , 2007, Physical review letters.

[24]  S Odoulov,et al.  Transient gain enhancement in photorefractive crystals with two types of movable charge carrier. , 2007, Optics letters.

[25]  Germano Montemezzani,et al.  Tailoring of infrared photorefractive properties of Sn 2 P 2 S 6 crystals by Te and Sb doping , 2007 .

[26]  Pierre Mathey,et al.  Modeling of the photorefractive nonlinear response in Sn 2 P 2 S 6 crystals , 2007 .

[27]  Germano Montemezzani,et al.  Photorefractive Effects in Sn 2 P 2 S 6 , 2007 .

[28]  A. Rüdiger Light induced charge transfer processes and pyroelectric luminescence in Sn2P2S6 , 2006 .

[29]  P. M. Bukivskij,et al.  Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals , 2006 .

[30]  Germano Montemezzani,et al.  Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn 2 P 2 S 6 , 2005 .

[31]  J. Fitzpatrick,et al.  The interpretation of molecular magnetic hyperfine interactions. , 2005, The Journal of chemical physics.

[32]  D. Cremer,et al.  Relativistically corrected hyperfine structure constants calculated with the regular approximation applied to correlation corrected ab initio theory. , 2004, The Journal of chemical physics.

[33]  N. Christensen,et al.  Nuclear quadrupole moment determination of 35 Cl, 79 Br, and 127 I , 2004 .

[34]  Germano Montemezzani,et al.  Fast near-infrared self-pumped phase conjugation with photorefractive Sn 2 P 2 S 6 , 2003 .

[35]  H. Overhof,et al.  Point Defects in Semiconductors and Insulators , 2003 .

[36]  A. Postnikov,et al.  Electronic structure of Sn 2 P 2 S 6 , 2003 .

[37]  В. В. Бунда,et al.  ТЕНЗИМЕТРИЧНІ ДОСЛІДЖЕННЯ КРИСТАЛІВ Sn 2 P 2 S 6 , 2002 .

[38]  Alexander A. Grabar,et al.  Enhanced photorefractive properties of modified Sn2P2S6 , 2001 .

[39]  Takao Nakamura,et al.  Growth of dislocation-free ZnSe single crystal by CVT method , 2000 .

[40]  S. Odoulov,et al.  Enhancement of beam coupling in the near infrared for tin hypothiodiphosphate , 1996 .

[41]  Romano A. Rupp,et al.  Photorefraction in tin hypothiodiphosphate in the near infrared , 1996 .

[42]  A. Grabar,et al.  Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared. , 1996, Optics letters.

[43]  J. R. Byberg Addition of O‐ to IO‐ 4 in a Crystalline Matrix: A Pentacoordinated Iodine(VIII) Species Studied by ESR and Optical Spectroscopy. , 1992 .

[44]  David A. Dixon,et al.  A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds , 1992 .

[45]  J. R. Byberg Addition of oxide to iodate (IO4-) in a crystalline matrix: a pentacoordinated iodine(VIII) species studied by ESR and optical spectroscopy , 1992 .

[46]  D. A. Cleary,et al.  High temperature crystal structure and DSC of Sn2P2S6 , 1992 .

[47]  I. Geifman,et al.  Temperature dependence of Mn2+ EPR in Sn2P2S6 near the phase transition , 1991 .

[48]  J. R. Byberg ESR spectrum of IO2−4 , 1986 .

[49]  M. Iwasaki,et al.  Electron spin resonance of 127I atoms trapped in Xe matrices , 1979 .

[50]  J. Morton,et al.  Atomic parameters for paramagnetic resonance data , 1978 .

[51]  H. Schäfer,et al.  Die Struktur des Di-Zinn-Hexathiohypodiphosphats Sn2P2S6 / The Crystal Structure of Sn2P2Se , 1974 .

[52]  C. Bailey ESR study of the I0 atom in HIO3 , 1973 .

[53]  S. G. Parker Single crystals and epitaxial films of ZnSe by chemical transport , 1971 .

[54]  P. Dyer,et al.  Gas‐Phase Electron Resonance Spectra of BrO and IO , 1970 .