Strong and tough glass composites with a partially segmented micro-architecture

[1]  F. Barthelat,et al.  Mechanics and properties of fish fin rays in nonlinear regimes of large deformations. , 2023, Acta biomaterialia.

[2]  L. Ren,et al.  Biomimetic laminated basalt fiber-reinforced composite with sinusoidally architected helicoidal structure integrating superior mechanical properties and microwave-transmissibility , 2023, Composites Science and Technology.

[3]  Linghui He,et al.  Anomalous inapplicability of nacre-like architectures as impact-resistant templates in a wide range of impact velocities , 2022, Nature communications.

[4]  P. Fratzl,et al.  Mineralization generates megapascal contractile stresses in collagen fibrils , 2022, Science.

[5]  N. Kotov,et al.  Multiscale engineered artificial tooth enamel , 2022, Science.

[6]  Zian Jia,et al.  Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture , 2022, Advanced materials.

[7]  F. Barthelat,et al.  Centrifugation and index matching yield a strong and transparent bioinspired nacreous composite , 2021, Science.

[8]  Francois Barthelat,et al.  Segmentations in fins enable large morphing amplitudes combined with high flexural stiffness for fish-inspired robotic materials , 2021, Science Robotics.

[9]  J. Plocher,et al.  Learning from nature: Bio-inspiration for damage-tolerant high-performance fibre-reinforced composites , 2021, Composites Science and Technology.

[10]  Frances Y. Su,et al.  Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs , 2019, Advanced materials.

[11]  F. Barthelat,et al.  Impact-resistant nacre-like transparent materials , 2019, Science.

[12]  Melina E. Hale,et al.  A comparison of pectoral fin ray morphology and its impact on fin ray flexural stiffness in labriform swimmers , 2018, Journal of morphology.

[13]  F. Barthelat,et al.  Tough and deformable glasses with bioinspired cross-ply architectures. , 2018, Acta biomaterialia.

[14]  Benjamin N. Taft,et al.  Variation in flexural stiffness of the lepidotrichia within and among the soft fins of yellow perch under different preservation techniques , 2018, Journal of morphology.

[15]  Yueguang Wei,et al.  Crack deflection occurs by constrained microcracking in nacre , 2018 .

[16]  Grace X. Gu,et al.  Hierarchically Enhanced Impact Resistance of Bioinspired Composites , 2017, Advanced materials.

[17]  F. Barthelat Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size , 2014 .

[18]  E. Saiz,et al.  Bioinspired structural materials. , 2014, Nature materials.

[19]  P. Fratzl,et al.  Improvements of strength and fracture resistance by spatial material property variations , 2014 .

[20]  F. Barthelat,et al.  Overcoming the brittleness of glass through bio-inspiration and micro-architecture , 2014, Nature Communications.

[21]  R. Ritchie,et al.  Micromechanical models to guide the development of synthetic 'brick and mortar' composites , 2012 .

[22]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[23]  P. Fratzl,et al.  Bioinspired Design Criteria for Damage‐Resistant Materials with Periodically Varying Microstructure , 2011 .

[24]  N. K. Taft,et al.  Functional implications of variation in pectoral fin ray morphology between fishes with different patterns of pectoral fin use , 2011, Journal of morphology.

[25]  Reza Rabiei,et al.  Toughness amplification in natural composites , 2011 .

[26]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[27]  J. Aizenberg,et al.  Effects of Laminate Architecture on Fracture Resistance of Sponge Biosilica: Lessons from Nature , 2008 .

[28]  George V Lauder,et al.  The mechanics of active fin-shape control in ray-finned fishes , 2007, Journal of The Royal Society Interface.

[29]  Ray S. Fertig,et al.  Influence of constituent properties and microstructural parameters on the tensile modulus of a polymer/clay nanocomposite , 2004 .

[30]  Zhigang Suo,et al.  Model for the robust mechanical behavior of nacre , 2001 .

[31]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[32]  Edwin S. Goodrich,et al.  Memoirs: On the Dermal Pin-rays of Pishes--Living and Extinct , 1904 .

[33]  J. Videler,et al.  The Relation Between Structure and Bending Properties of Teleost Fin Rays , 1986 .