Refined Fully Explicit a Posteriori Residual-Based Error Control

The explicit residual-based a posteriori error estimator for elliptic partial differential equations is reliable up to the multiplication of some generic constant which needs to be involved for full error control. The present mathematical literature takes this constant from the stability and approximation properties of Clement-type quasi-interpolation operators and so results in an overestimation of the error which is bigger than for implicit and more expensive a posterori error estimators. This paper propagates a paradigm shift to start with an equilibration error estimator technique followed by its efficiency analysis. The outcome is a refined residual-based a posteriori error estimate with explicit constants which leads to slightly sharper error control than the work of Veeser and Verfurth in 2009. A first application to guaranteed explicit error estimation for two-dimensional nonconforming and a generalization to higher-order finite element methods conclude the paper.

[1]  Ricardo G. Durán,et al.  An optimal Poincare inequality in L^1 for convex domains , 2003 .

[2]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[3]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[4]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[5]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[6]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[7]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[10]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[11]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[12]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[13]  R. Laugesen,et al.  Minimizing Neumann fundamental tones of triangles: An optimal Poincaré inequality , 2009, 0907.1552.

[14]  R. Hoppe,et al.  A review of unified a posteriori finite element error control , 2012 .

[15]  Martin Vohralík Guaranteed and Fully Robust a posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients , 2011, J. Sci. Comput..

[16]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[17]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[18]  Andreas Veeser,et al.  Explicit Upper Bounds for Dual Norms of Residuals , 2009, SIAM J. Numer. Anal..

[19]  Martin Vohralík,et al.  A unified framework for a posteriori error estimation for the Stokes problem , 2012, Numerische Mathematik.

[20]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..